全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Colloidal Stability of Nitrogen-Rich Carbon Nanodots Aqueous Dispersions

DOI: https://doi.org/10.3390/c5040074

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present survey reports on the colloidal stability of aqueous dispersions of nitrogen-rich carbon nanodots (N-CDs). The N-CDs were synthesized by thermally induced decomposition of organic precursors and present an inner core constituted of a β ? C 3 N 4 crystalline structure surrounded by a surface shell containing a variety of polar functional groups. N-CDs size and structure were checked by combined analysis of XRD (X-ray Diffraction) and TEM (Transmission Electron Microscopy) measurements. FTIR (Fourier-Transform Infrared Spectroscopy) experiments revealed the presence of carboxyl and amide groups on N-CDs surface. Towards a better understanding of the relation between colloidal stability and surface charge development, zetametry experiments were applied in N-CDs dispersions at different pHs and constant ionic strength. The increase of the absolute values of zeta potential with the alkalinization of the dispersion medium is consistent with the deprotonation of carboxyl groups on N-CDs surface, which agrees with the macroscopic visual observations of long-term colloidal stability at pH 12. The saturation value of N-CDs surface charge density was evaluated by means of potentiometric-conductometric titrations. The difference between carboxyl-related surface charge and the one determined by zeta potential measurements point to the presence of oxidized nitrogen functionalities onto the N-CDs surface in addition to carboxyl groups. These novel results shed light on the electrostatic repulsion mechanism that allows for the remarkable colloidal stability of N-CDs dispersions. View Full-Tex

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413