全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Green Synthesis of Magnetite Nanoparticles Using Aqueous Leaves Extracts of Azadirachta indica and Its Application for the Removal of As(V) from Water

DOI: 10.4236/gsc.2020.104009, PP. 117-132

Keywords: Green Synthesis, Magnetite Nanoparticles (MNPs), Azadirachta indica Leaves Extract, As(V) Adsorption

Full-Text   Cite this paper   Add to My Lib

Abstract:

Because of various disadvantages of chemical synthesis processes, these days people are attracting towards green synthesis processes as it is devoid of toxic by-products, cost-effective and eco-friendly. In this study, a simple green synthesis method is applied for the synthesis of magnetite (Fe3O4) nanoparticles (MNPs) by co-precipitation of FeCl6H2O and FeSO7H2O in the molar ratio of 2:1 using Azadirachta indica leaves extract under nitrogen environment. FTIR, XRD, SEM etc. were used to characterize the synthesized MNPs. Batch adsorption experiments were carried out to determine adsorption equilibrium of As(V) as a function of pH, adsorbent dose, contact time and different initial concentrations. Kinetics results were best described by pseudo-second order model with rate constant value 0.0052 g/(mg·min). The equilibrium adsorption isotherm was best fitted with Langmuir adsorption isotherm model. The maximum adsorption capacity was found to be 62.89 mg/g at pH 2. MNPs showed a high affinity for As(V) and avoids filtration for solid-liquid separation, thus it would be employed as a promising material for the removal of As(V) from water.

References

[1]  Ali, H., Khan, E. and Ilahi, I. (2019) Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, 2019, Article ID: 6730305.
https://doi.org/10.1155/2019/6730305
[2]  Mohan, D. and Pittman, C.U. (2006) Activated Carbons and Low Cost Adsorbents for Remediation of Tri- and Hexavalent Chromium from Water. Journal of Hazardous Materials, 137, 762-811.
https://doi.org/10.1016/j.jhazmat.2006.06.060
[3]  World Health Organization (2017) Guidelines for Drinking Water Quality. WHO Guidelines 315, WHO, Geneva.
[4]  Okazaki, T., Wang, W., Kuramitz, H., Hata, N. and Taguchi, S. (2013) Molybdenum Blue Spectrophotometry for Trace Arsenic in Ground Water Using a Soluble Membrane Filter and Calcium Carbonate Column. Analytical Sciences, 29, 67-72.
https://doi.org/10.2116/analsci.29.67
[5]  Liu, C.-H., Chuang, Y.-H., Chen, T.-Y., Tian, Y., Li, H., Wang, M.-K. and Zhang, W. (2015) Mechanism of Arsenic Adsorption on Magnetite Nanoparticles from Water: Thermodynamic and Spectroscopic Studies. Environmental Science and Technology, 49, 7726-7734.
https://doi.org/10.1021/acs.est.5b00381
[6]  Manning, B.A., Fendorf, S.E. and Goldberg, S. (1998) Surface Structures and Stability of Arsenic(III) on Goethite: Spectroscopic Evidence for Inner-Sphere Complexes. Environmental Science and Technology, 32, 2383-2388.
https://doi.org/10.1021/es9802201
[7]  Mishra, S.P. (2014) Adsorption-Desorption of Heavy Metal Ions. Current Science, 107, 601-612.
[8]  Prathna, T.C., Sharma, S.K. and Kennedy, M. (2017) Development of Iron Oxide Nanoparticle Adsorbents for Arsenic and Fluoride Removal. Desalination and Water Treatment, 67, 187-195.
https://doi.org/10.5004/dwt.2017.20464
[9]  Badruddoza, A.Z.M., Shawon, Z.B.Z., Rahman, M.T., Hao, K.W., Hidajat, K. and Uddin, M.S. (2013) Ionically Modified Magnetic Nanomaterials for Arsenic and Chromium Removal from Water. Chemical Engineering Journal, 225, 607-615.
https://doi.org/10.1016/j.cej.2013.03.114
[10]  Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X. and Huang, X. (2019) Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials, 9, 424.
https://doi.org/10.3390/nano9030424
[11]  Habuda-Stanic, M. and Nujic, M. (2015) Arsenic Removal by Nanoparticles: A Review. Environmental Science and Pollution Research, 22, 8094-8123.
https://doi.org/10.1007/s11356-015-4307-z
[12]  Chen, W., Parette, R., Zou, J., Cannon, F.S. and Dempsey, B.A. (2007) Arsenic Removal by Iron-Modified Activated Carbon. Water Research, 41, 1851-1858.
[13]  Salviano, L.B., Da Silva Cardoso, T.M., Silva, G.C., Silva Dantas, M.S. and De Mello Ferreira, A. (2018) Microstructural Assessment of Magnetite Nanoparticles (Fe3O4) Obtained by Chemical Precipitation under Different Synthesis Conditions. Materials Research, 21, 2-8.
https://doi.org/10.1590/1980-5373-mr-2017-0764
[14]  Siddiqi, K.S., ur Rahman, A., Tajuddin and Husen, A. (2016) Biogenic Fabrication of Iron/Iron Oxide Nanoparticles and Their Application. Nanoscale Research Letters, 11, Article No. 498.
https://doi.org/10.1186/s11671-016-1714-0
[15]  Khalil, A.T., Ovais, M., Ullah, I., Ali, M., Khan S.Z. and Maaza, M. (2017) Biosynthesis of Iron Oxide (Fe2O3) Nanoparticles via Aqueous Extracts of Sageretia thea (Osbeck.) and Their Pharmacognostic Properties. Green Chemistry Letters and Reviews, 10, 186-201.
https://doi.org/10.1080/17518253.2017.1339831
[16]  Hussain, I., Singh, N.B., Singh. A., Singh, H. and Singh, S.C. (2016) Green Synthesis of Nanoparticles and Its Potential Application. Biotechnoogyl Letters, 38, 545-560.
[17]  El-Kassas, H.Y., Aly-Eldeen, M.A. and Gharib, S.M. (2016) Green Synthesis of Iron Oxide (Fe3O4) Nanoparticles Using Two Selected Brown Seaweeds: Characterization and Application for Lead Bioremediation. Acta Oceanologica Sinica, 35, 89-98.
https://doi.org/10.1007/s13131-016-0880-3
[18]  Loo, Y.Y., Chieng, B.W., Nishibuchi, M. and Radu, S. (2012) Synthesis of Silver Nanoparticles by Using Tea Leaf Extract from Camellia sinensis. International Journal of Nanomedicine, 7, 4263-4267.
https://doi.org/10.2147/IJN.S33344
[19]  Herlekar, M., Barve, S. and Kumar, R. (2014) Plant-Mediated Green Synthesis of Iron Nanoparticles. Journal of Nanoparticles, 2014, Article ID: 140614.
https://doi.org/10.1155/2014/140614
[20]  Rosli, I.R., Zulhaimi, H.I., Ibrahim, S.K.M., Gopinath, S.C.B., Kasim, K.F., Akmal, H.M., Nuradibah, M.A. and Sam, T.S. (2018) Phytosynthesis of Iron Nanoparticle from Averrhoa Bilimbi Linn. IOP Conference Series: Materials Science and Engineering, 318, 1-9.
https://doi.org/10.1088/1757-899X/318/1/012012
[21]  Mohanpuria, P., Rana, N.K. and Yadav, S.K. (2008) Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. Journal of Nanoparticle Research, 10, 507-517.
https://doi.org/10.1007/s11051-007-9275-x
[22]  Kanagasubbulakshmi, S. and Kadirvelu K. (2017) Green Synthesis of Iron Oxide Nanoparticles Using Lagenaria siceraria and Evaluation of Its Antimicrobial Activity. Defence Life Science Journal, 2, 422-427.
https://doi.org/10.14429/dlsj.2.12277
[23]  Lingamdinne, L.P., Chang, Y.Y., Yang J.K., Singh, J., Choi, E.H., Shiratani, M., Koduru, J.R. and Attri, P. (2017) Biogenic Reductive Preparation of Magnetic Inverse Spinel Iron Oxide Nanoparticles for the Adsorption Removal of Heavy Metals. Chemical Engineering Journal, 307, 74-84.
https://doi.org/10.1016/j.cej.2016.08.067
[24]  Mahdavi, M. Ahmad, M.B., Haron, J., Namvar, F., Nadi, B., Zaki, M.R. and Amin, J. (2013) Synthesis, Surface Modification and Characterisation of Biocompatible Magnetic Iron Oxide Nanoparticles for Biomedical Applications. Molecules, 18, 7533-7548.
https://doi.org/10.3390/molecules18077533
[25]  Fiol, N. and Villaescusa, I. (2009) Determination of Sorbent Point Zero Charge: Usefulness in Sorption Studies. Environmental Chemistry Letters, 7, 79-84.
https://doi.org/10.1007/s10311-008-0139-0
[26]  Choudhury, R., Majumder, M., Roy, D.N., Basumallick, S. and Misra, T.K. (2016) Phytotoxicity of Ag Nanoparticles Prepared by Biogenic and Chemical Methods. International Nano Letters, 6, 153-159.
https://doi.org/10.1007/s40089-016-0181-z
[27]  Paudyal, H., Ohto, K., Kawakita, H. and Inoue, K. (2020) Recovery of Fluoride from Water through Adsorption Using Orange-Waste Gel, Followed by Desorption Using Saturated Lime Water. Journal of Material Cycles and Waste Management, 22, 1484-1491.
https://doi.org/10.1007/s10163-020-01042-1
[28]  Awwad, A.M. and Salem, N.M. (2012) A Green and Facile Approach for Synthesis of Magnetite Nanoparticles. Nanoscience and Nanotechnology, 2, 208-213.
https://doi.org/10.5923/j.nn.20120206.09
[29]  Khandanlou, R. Ahmad, M.B., Shameli, K. and Kalantari, K. (2013) Synthesis and Characterization of Rice Straw/Fe3O4 Nanocomposites by a Quick Precipitation Method. Molecules, 18, 6597-6607.
https://doi.org/10.3390/molecules18066597
[30]  Lunge, S., Singh, S. and Sinha, A. (2014) Magnetic Iron Oxide (Fe3O4) Nanoparticles from Tea Waste for Arsenic Removal. Journal of Magnetism and Magnetic Materials, 356, 21-31.
https://doi.org/10.1016/j.jmmm.2013.12.008
[31]  Phumying, S., Labuayai, S., Thomas, C., Amornkitbamrung, V., Swatsitang, E. and Maensiri, S. (2013) Aloevera Plant-Extracted Solution Hydrothermal Synthesis and Magnetic Properties of Magnetite (Fe3O4) Nanoparticles. Applied Physics A: Materials Science and Processing, 111, 1187-1193.
https://doi.org/10.1007/s00339-012-7340-5
[32]  Poudel, B.R., Aryal, R.L., Bhattarai,S., Koirala, A.R., Gautam, S.K., Ghimire, K.N., Pant, B., Park, M., Paudyal, H. and Pokhrel, M.R. (2020) Agro-Waste Derived Biomass Impregnated with TiO2 as a Potential Adsorbent for the Removal of As(III) from Water. Catalysts, 10, 1125.
https://doi.org/10.3390/catal10101125
[33]  Paudyal, H., Inoue, K., Ohto, K., Kawakita, H. and Harada, H. (2019) Recovery of Phosphorus from Incineration Ash of Chicken Dropping by Citric Acid Leaching Followed by Adsorption Using Porous Resin Containing Hydrated Zirconium Oxide Powder. Journal of Chemical Engineering of Japan, 52, 465-470.
[34]  Ghimire, K.N., Inoue, K., Makino, K. and Miyajima, T. (2002) Adsorptive Removal of Arsenic Using Orange Juice Residue. Separation Science and Technology, 37, 2785-2799.
https://doi.org/10.1081/SS-120005466
[35]  Karmacharya, M.S., Gupta, V.K, Tyagi, I., Agarwal, S. and Jha, V.K. (2016) Removal of As(III) and As(V) Using Rubber Tire Derived Activated Carbon Modified with Alumina Composite. Journal of Molecular Liquids, 216, 836-844.
https://doi.org/10.1016/j.molliq.2016.02.025
[36]  Aryal, M., Ziagova, M. and Liakopoulou-Kyriakides, M. (2011) Comparison of Cr(VI) and As(V) Removal in Single and Binary Mixtures with Fe(III)-Treated Staphylococcus xylosus Biomass: Thermodynamic Studies. Chemical Engineering Journal, 169, 100-106.
https://doi.org/10.1016/j.cej.2011.02.059

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413