全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Review of Packaging Options for Tomato Smallholder Farmers in Sub-Saharan Africa

DOI: 10.4236/ojopm.2020.104004, PP. 35-48

Keywords: Packaging, Tomato, Biofilms, Sub-Saharan Africa, Papaya

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tomato production systems in developing countries are characterized by high post harvest losses. Due to the perishability of tomatoes, lack of awareness and knowledge of postharvest handling techniques, and poor packaging, farmers encounter 20% - 50% postharvest losses. Farmers use traditional baskets, wooden, and plastic crates as packaging materials during transportation of tomatoes. However, tomatoes are often damaged due to the size and inner rough surface of crates and the difficulty in handling. The need for fresh tomato at the consumer requires a packaging that protects tomatoes against physical damages, increasing its shelf life prior to consumption. Packaging is important in ensuring quality, easing handling, extending the shelf life during storage and transportation of food products. However, the conventional use of synthetic-based materials for advanced packaging contributes to environmental problems because of their non-biodegradability and health concerns. This review article highlights the different materials used for packaging tomato and the prospects of using papaya, as a precursor for developing tomato packages.

References

[1]  Hammond, R.W. (2017) Chap. 1. Economic Significance of Viroids in Vegetable and Field Crops. In: Hadidi, A., Flores, R., Palukaitis, P. and Randles, J. Eds., Viroids and Satellites, Academic Press, Cambridge, MA,, 5-13.
https://doi.org/10.1016/B978-0-12-801498-1.00001-2
[2]  Singh, K.V., Singh, A.K. and Kumar, A. (2017) Disease Management of Tomato through PGPB: Current Trends and Future Perspective. 3 Biotech, 7, Article No. 255.
https://doi.org/10.1007/s13205-017-0896-1
[3]  de Vos, R.C.H., Hall, D.R. and Moing, A. (2011) Metabolomics of a Model Fruit: Tomato. In: Hall, D.R., Ed., Annual Plant Reviews Volume 43: Biology of Plant Metabolomics, Blackwell Publishing Ltd., Hoboken, NJ, 109-155.
https://doi.org/10.1002/9781444339956.ch5
[4]  Okolie, N.P. and Sannie, T.E. (2012) Effect of Post Harvest Treatments on Quality of Whole Tomatoes. African Journal of Food Science, 6, 70-76.
[5]  Kitinoja, L. and Kader, A.A. (2015) Measuring Postharvest Losses of Fresh Fruits and Vegetables in Developing Countries. The Postharvest Education Foundation Paper 15-02.
http://postharvest.org/PEF_White_Paper_15-02_PHFVmeasurement.pdf
[6]  Emana, B., Afari-Sefa, V., Nenguwo, N., Ayana, A., Kebede, D. and Mohammed, H. (2017) Characterization of Pre- and Postharvest Losses of Tomato Supply Chain in Ethiopia. Agriculture and Food Security, 6, Article No. 3.
https://doi.org/10.1186/s40066-016-0085-1
[7]  Affognon, H., Mutungi, C., Sanginga, P. and Borgemeister, C. (2015) Unpacking Postharvest Losses in Sub-Saharan Africa: A Meta-Analysis. World Development, 66, 49-68.
https://doi.org/10.1016/j.worlddev.2014.08.002
[8]  Marsh, K. and Bugusu, B. (2007) Food Packaging—Roles, Materials, and Environmental Issues: Scientific Status Summary. Journal of Food Science, 72, R39-R55.
https://doi.org/10.1111/j.1750-3841.2007.00301.x
[9]  Osborn, K.R. and Jenkins, W.A. (1992) Plastic Films: Technology and Packaging Applications. Technomic Publishing Company Inc., Lancaster, PA.
[10]  Piringer, O. and Baner, A. (2000) Plastic Packaging Materials for Food Barrier Function, MassTransport, Quality Assurance and Legislation. Wiley-VCH, Weinheim, Germany.
https://doi.org/10.1002/9783527613281
[11]  Sharma, C., Manepalli, P.H., Thatte, A., Thomas, S., Kalarikkal, N. and Alavi, S. (2017) Biodegradable Starch/PVOH/Laponite RD-Based Bionanocomposite Films Coated with Graphene Oxide: Preparation and Performance Characterization for Food Packaging Applications. Colloid and Polymer Science, 295, 1695-1708.
https://doi.org/10.1007/s00396-017-4114-9
[12]  Owusu, P.A., Banadda, N. and Kiggundu, N. (2017) Mass Balance of Plastic Waste Conversion to Fuel Oil—A case in Uganda. Journal of Sustainable Development, 10, 41-50.
https://doi.org/10.5539/jsd.v10n6p41
[13]  Leal Filho, W., Saari, U., Fedoruk, M., Iital, A., Moora, H., Klöga, M. and Voronova, V. (2019) An Overview of the Problems Posed by Plastic Products and the Role of Extended Producer Responsibility in Europe. Journal of Cleaner Production, 214, 550-558.
https://doi.org/10.1016/j.jclepro.2018.12.256
[14]  Tulamandi, S., Rangarajan, V., Rizvi, S.S.H., Singhal, R.S., Chattopadhyay, S. and Saha, N. (2016) A Biodegradable and Edible Packaging Film Based on Papaya Puree, Gelatin, and Defatted Soy Protein. Food Packaging and Shelf Life, 10, 60-71.
https://doi.org/10.1016/j.fpsl.2016.10.007
[15]  Ramos, M., Valdés, A., Beltrán, A. and Garrigós, M. (2016) Gelatin-Based Films and Coatings for Food Packaging Applications. Coatings, 6, 41.
https://doi.org/10.3390/coatings6040041
[16]  de Moraes Crizel, T., de Oliveira Rios, A., Alves, V.D., Bandarra, N., Moldão-Martins, M. and Hickmann Flôres, S. (2018) Biodegradable Films Based on Gelatin and Papaya Peel Microparticles with Antioxidant Properties. Food and Bioprocess Technology, 11, 536-550.
https://doi.org/10.1007/s11947-017-2030-0
[17]  Otoni, C.G., Avena-Bustillos, R.J., Azeredo, H.M.C., Lorevice, M.V., Moura, M.R., Mattoso, L.H.C. and McHugh, T.H. (2017) Recent Advances on Edible Films Based on Fruits and Vegetables—A Review. Comprehensive Reviews in Food Science and Food Safety, 16, 1151-1169.
https://doi.org/10.1111/1541-4337.12281
[18]  González, A., Strumia, M.C. and Igarzabal, C.I.A. (2011) Cross-Linked Soy Protein as Material for Biodegradable Films: Synthesis, Characterization and Biodegradation. Journal of Food Engineering, 106, 331-338.
https://doi.org/10.1016/j.jfoodeng.2011.05.030
[19]  Arancibia, M.Y., López-Caballero, M.E., Gómez-Guillén, M.C. and Montero, P. (2014) Release of Volatile Compounds and Biodegradability of Active Soy Protein Lignin Blend Films with Added Citronella Essential Oil. Food Control, 44, 7-15.
https://doi.org/10.1016/j.foodcont.2014.03.025
[20]  Viana, M.R., Sá, N.M.S.M., Barros, M.O., Borges, M.D.F. and Azeredo, H.M.C. (2018) Nanofibrillated Bacterial Cellulose and Pectin Edible Films Added with Fruit Purees. Carbohydrate Polymers, 196, 27-32.
https://doi.org/10.1016/j.carbpol.2018.05.017
[21]  Otoni, C.G., de Moura, M. R., Aouada, F.A., Camilloto, G.P., Cruz, R.S., Lorevice, M.V., Soares, N.F. and Mattoso, L.H.C. (2014) Antimicrobial and Physical-Mechanical Properties of Pectin/Papaya Puree/Cinnamaldehyde Nanoemulsion Edible Composite Films. Food Hydrocolloids, 41, 188-194.
https://doi.org/10.1016/j.foodhyd.2014.04.013
[22]  Azeredo, H.M.C., Morrugares-Carmona, R., Wellner, N., Cross, K., Bajka, B. and Waldron, K.W. (2016) Development of Pectin Films with Pomegranate Juice and Citric Acid. Food Chemistry, 198, 101-106.
https://doi.org/10.1016/j.foodchem.2015.10.117
[23]  Tharanathan, R.N. (2003) Biodegradable Films and Composite Coatings: Past, present and future. Trends in Food Science and Technology, 14, 71-78.
https://doi.org/10.1016/S0924-2244(02)00280-7
[24]  Jenkins, J.A. (1984) The Origin of the Cultivated Tomato. Economic Botany, 2, 379-392.
https://doi.org/10.1007/BF02859492
[25]  Peralta, I.E. and Spooner, D.M. (2007) History, Origin, and Early Cultivation of Tomato. In: Razdan, M. and Mattoo, A., Eds., Genetic Improvement of Solanaceous Crops, Science Publishers, Enfield, New Hampshire, USA, 1-24.
[26]  Rao, A.V., Waseem, Z. and Agarwal, S. (1998) Lycopene Content of Tomatoes and Tomato Products and Their Contribution to Dietary Lycopene. Food Research International, 31, 737-741.
https://doi.org/10.1016/S0963-9969(99)00053-8
[27]  Shi, J. and Le Maguer, M. (2000) Lycopene in Tomatoes: Chemical and Physical Properties Affected by Food Processing. Critical Reviews in Food Science and Nutrition, 40, 1-42.
https://doi.org/10.1080/10408690091189275
[28]  Kabwama, S.N., Bahendeka, S.K., Wesonga, R., Mutungi, G. and Guwatudde, D. (2019) Low Consumption of Fruits and Vegetables among Adults in Uganda: Findings from a Countrywide Cross-Sectional Survey. Archives of Public Health, 77, 4-11.
https://doi.org/10.1186/s13690-019-0332-6
[29]  Kalantar-Zadeh, K. and Moore, L.W. (2020) Impact of Nutrition and Diet on COVID-19 Infection and Implications for Kidney Health and Kidney Disease Management. Journal of Renal Nutrition, 30, 179-181.
https://doi.org/10.1053/j.jrn.2020.03.006
[30]  Ochilo, W.N., Nyamasyo, G.N., Kilalo, D., Otieno, W., Otipa, M., Chege, F., Karanja, T. and Lingeera, E.K. (2019) Characteristics and Production Constraints of Smallholder Tomato Production in Kenya. Scientific African, 2, e00014.
https://doi.org/10.1016/j.sciaf.2018.e00014
[31]  Bwire, D., Watanabe, F., Suzuki, S. and Kuga, S. (2018) Optimal Water Use on Low Pressure Drip Irrigation System for Tomato Cultivation in Uganda. Journal of Arid Land Studies, 28, 77-80.
[32]  Karuku, G.N., Kimenju, J.W. and Verplancke, H. (2017) Farmers’ Perspectives on Factors Limiting Tomato Production and Yields in Kabete, Kiambu County, Kenya. East African Agricultural and Forestry Journal, 82, 70-89.
https://doi.org/10.1080/00128325.2016.1261986
[33]  Bett, E., Mugwe, J., Nyalugwe, N., Haraman, E., Williams, F., Tambo, J. and Bundi, M. (2018) Impact of Plant Clinics on Disease and Pest Management, Tomato Productivity and Profitability in Malawi. CABI Working Paper 11.
[34]  Wakholi, C., Cho, B.-K., Mo, C. and Kim, M.S. (2015) Current State of Postharvest Fruit and Vegetable Management in East Africa. Journal of Biosystems Engineering, 40, 238-249.
https://doi.org/10.5307/JBE.2015.40.3.238
[35]  ACET (2014) The Fruit Value Capture Opportunity in Africa. Pathways to Transformation.
http://acetforafrica.org/acet/wp-content/uploads/publications/2016/03/Fruit-Dalberg.pdf
[36]  Kimaro, E. and Msogya, T. (2012) Postharvest Losses of Mangro Fruit (Mangifera indica) in Morogoro Region. Proceedings of the RUFORUM 3rd Biennial Conference, Entebbe, Uganda, 24-28 September 2012, 799-803.
[37]  Kehlenbeck, K., Asaah, E. and Jamnadass, R. (2013) Diversity of Indigenous Fruit Trees and Their Contribution to Nutrition and Livelihoods in Sub-Saharan Africa: Examples from Kenya and Cameroon. In: Fanzo, J., Hunter, D., Borelli, T. and Mattei, F., Eds., Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health, Routledge, London and New York, 257-269.
[38]  FAOSTAT (2020) Food and Agricultural Organization of the United Nations.
http://www.fao.org/faostat/en/#data
[39]  Coles, R., McDowell, D. and Kirwan, M. (2003) Food Packaging Technology. Blackwell Publishing, Oxford, UK.
[40]  Prasad, P. and Kochhar, A. (2014) Active Packaging in Food Industry: A Review. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8, 1-7.
https://doi.org/10.9790/2402-08530107
[41]  Kereth, G., Lyimo, M., Mbwana, H., Mongi, R.J. and Ruhembe, C.C. (2013) Assessment of Post-harvest Handling Practices: Knowledge and Losses of Fruits in Bagamoyo District of Tanzania. Journal of Food Science and Quality Management, 11, 8-16.
[42]  Kangire, A., Musana, S., Asea, G., Otim, A., Aisu, G., Logose, M. and Kashaija, I. (2016) A guide to Effective Harvesting, Hanadling and Quality Marketing of Tomato in Uganda. In: Postharvest Handling of Tomato in Africa, National Institute of Horticultural and Herbal Science, Rural Development Administration, Korea, 55-68.
[43]  Aba, I.P., Gana, Y.M., Ogbonnaya, C. and Morenikeji, O.O. (2012) Simulated Transport Damage Study on Fresh Tomato (Lycopersicon esculentum) Fruits. Agricultural Engineering International: CIGR Journal, 14, 119-126.
[44]  Kitinoja, L. and AlHassan, H.Y. (2012) Identification of Appropriate Postharvest Technologies for Small Scale Horticultural Farmers and Marketers in Sub-Saharan Africa and South Asia—Part 1. Postharvest Losses and Quality Assessments. Acta Horticulturae, 934, 31-40.
https://doi.org/10.17660/ActaHortic.2012.934.1
[45]  Ugonna, C., Jolaoso, M. and Onwualu, A. (2015) Tomato Value Chain in Nigeria: Issues, Challenges and Strategies. Journal of Scientific Research and Reports, 7, 501-515.
https://doi.org/10.9734/JSRR/2015/16921
[46]  Dari, L., Nenguwo, N. and Afari-Sefa, V. (2018) Evaluation of Packaging Liners in Wooden and Plastic Crates for Handling Tomatoes. Journal of Postharvest Technology, 6, 36-40.
[47]  Plaisier, C., Sibomana, M., van der Waal, J., Clercx, L., van Wagenberg, C.P.A. and Dijkxhoorn, Y. (2019) Approach for Designing Context-Specific, Locally Owned Interventions to Reduce Postharvest Losses: Case Study on Tomato Value Chains in Nigeria. Sustainability, 11, 247.
https://doi.org/10.3390/su11010247
[48]  Mashau, M., Moyane, J. and Jideani, I.A. (2012) Assessment of Post Harvest Losses of Fruits at Tshakhuma Fruit Market in Limpopo Province, South Africa. African Journal of Agricultural Research, 7, 4145-4150.
[49]  Radusin, T.I., Kevresan, J.S., Mastilovic, J.S., Novakovic, A.R. and Hajnal, E.P.J. (2013) Influence of Different Packaging Solutions on Qualitative and Quantitative Properties of Fresh Tomato Variety Izmir during Storage at Market Conditions. Food and Feed Research, 40, 85-92.
[50]  Kirwan, M.J., Plant, S. and Strawbridge, J.W. (2011) Plastics in Food Packaging. In: Coles, R. and Kirwan, M., Eds., Food and Beverage Packaging Technology, Blackwell Publishing Ltd., Hoboken, NJ, 157-212.
https://doi.org/10.1002/9781444392180.ch7
[51]  Ashenafi, H. (2018) Shelf Life and Quality of Tomato (Lycopersicon esculentum Mill.) Fruits as Affected by Different Packaging Materials. African Journal of Food Science, 12, 21-27.
https://doi.org/10.5897/AJFS2017.1568
[52]  Falguera, V., Quintero, J.P., Jiménez, A., Muñoz, J.A. and Ibarz, A. (2011) Edible Films and Coatings: Structures, Active Functions and Trends in Their Use. Trends in Food Science and Technology, 22, 292-303.
https://doi.org/10.1016/j.tifs.2011.02.004
[53]  Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B. and Coma, V. (2018) Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety, 17, 165-199.
https://doi.org/10.1111/1541-4337.12322
[54]  Kader, A.A., Zagory, D. and Kerbel, E. (1989) Modified Atmosphere Packaging for Fruits and Vegetables. Critical Reviews in Food Science and Nutrition, 28, 1-30.
https://doi.org/10.1080/10408398909527490
[55]  Exama, A., Arul, J., Lencki, R.W., Lee, L.Z. and Toupin, C. (1993) Suitability of Plastic Films for Modified Atmosphere Packaging of Fruits and Vegetables. Journal of Food Science, 58, 1365-1370.
https://doi.org/10.1111/j.1365-2621.1993.tb06184.x
[56]  Asem, A., Hassan, S.A., Arisha, H.M.E., Bardisi, A.A. and Sabreen, K.A.I. (2017) Effect of Some Packaging Materials on Quality Attributes of Tomato Fruits (Solanum lycopersicum L.) during Cold Storage and after Shelf Life Period. Middle East Journal of Agriculture Research, 5, 687-700.
[57]  Efiuvwevwere, B.J.O. and Uwanogho, G.U. (1990) Effects of Packaging Materials Following Ethanol and Benomyl Treatments on Chemical and Microbiological Changes in Tomato (Lycopersicon esculentum) Fruits. Journal of the Science of Food and Agriculture, 52, 393-402.
https://doi.org/10.1002/jsfa.2740520312
[58]  Akbudak, B., Akbudak, N., Seniz, V. and Eris, A. (2007) Sequential Treatments of Hot Water and Modified Atmosphere Packaging in Cherry Tomatoes. Journal of Food Quality, 30, 896-910.
https://doi.org/10.1111/j.1745-4557.2007.00168.x
[59]  Paviath, A.E. and Orts, W. (2009) Edible Films and Coatings: Why, What, and How? In: Milda, E.E. and Huber, K.C., Eds., Edible Films and Coatings for Food Applications, Springer, New York, 1-23.
https://doi.org/10.1007/978-0-387-92824-1_1
[60]  Milani, J.M. and Tirgarian, B. (2020) An Overview of Edible Protein-Based Packaging: Main Sources, Advantages, Drawbacks, Recent Progressions and Food Applications. Journal of Packaging Technology and Research, 4, 103-115.
https://doi.org/10.1007/s41783-020-00086-w
[61]  Galus, S. and Kadzińska, J. (2015) Food Applications of Emulsion-Based Edible Films and Coatings. Trends in Food Science and Technology, 45, 273-283.
https://doi.org/10.1016/j.tifs.2015.07.011
[62]  Labuza, T.P. and Contreras-Medellin, R. (1981) Prediction of Moisture Protection Requirements for Foods. Cereal Foods World, 26, 335-343.
[63]  Dangaran, K., Tomasula, P.M. and Qi, P. (2009) Structure and Function of Protein-Based Edible Films and Coatings. In: Embuscado, M.E. and Huber, K.C., Eds., Edible Films and Coatings for Food Applications, Springer, New York, 25-56.
https://doi.org/10.1007/978-0-387-92824-1_2
[64]  Reis, R.C., dos, Devilla, I.A., Correa, P.C., de Oliveira, G.H.H. and Castro, V. (2015) Postharvest Conservation of Cherry Tomato with Edible Coating. African Journal of Agricultural Research, 10, 1164-1170.
[65]  Thumula, P. (2006) Studies on Storage Behaviour of Tomatoes Coated with Chitosan-Lysozyme Films. Doctoral Dissertation, McGill University, Montréal, QC.
[66]  Park, H.J., Chinnan, M.S. and Shewfelt, R.L. (1994) Edible Corn-Zein Film Coatings to Extend Storage Life of Tomatoes. Journal of Food Processing and Preservation, 18, 317-331.
https://doi.org/10.1111/j.1745-4549.1994.tb00255.x
[67]  Nandane, A.S. and Jain, R.K. (2011) Effect of Composite Edible Coating on Physicochemical Properties of Tomatoes Stored at Ambient Conditions. International Journal of Advanced Engineering Technology, 2, 211-217.
[68]  Crouzier, T., Boudou, T. and Picart, C. (2010) Polysaccharide-Based Polyelectrolyte Multilayers. Current Opinion in Colloid and Interface Science, 15, 417-426.
https://doi.org/10.1016/j.cocis.2010.05.007
[69]  Milkova, V. and Radeva, T. (2015) Influence of Charge Density and Calcium Salt on Stiffness of Polysaccharides Multilayer Film. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481, 13-19.
https://doi.org/10.1016/j.colsurfa.2015.03.061
[70]  Espitia, P.J.P., Du, W.X., Avena-Bustillos, R.J., Soares, N.F.F. and McHugh, T.H. (2014) Edible Films from Pectin: Physical-Mechanical and Antimicrobial Properties—A Review. Food Hydrocolloids, 35, 287-296.
https://doi.org/10.1016/j.foodhyd.2013.06.005
[71]  Homez-Jara, A., Daza, L.D., Aguirre, D.M., Muñoz, J.A., Solanilla, J.F. and Váquiro, H.A. (2018) Characterization of Chitosan Edible Films Obtained with Various Polymer Concentrations and Drying Temperatures. International Journal of Biological Macromolecules, 113, 1233-1240.
https://doi.org/10.1016/j.ijbiomac.2018.03.057
[72]  Wang, X., Guo, C., Hao, W., Ullah, N., Chen, L., Li, Z. and Feng, X. (2018) Development and Characterization of Agar-Based Edible Films Reinforced with Nano-Bacterial Cellulose. International Journal of Biological Macromolecules, 118, 722-730.
https://doi.org/10.1016/j.ijbiomac.2018.06.089
[73]  Galus, S., Lenart, A., Voilley, A. and Debeaufort, F. (2013) Effect of Oxidized Potato Starch on the Physicochemical Properties of Soy Protein Isolate-Based Edible Films. Food Technology and Biotechnology, 51, 403-409.
[74]  Kurek, M., Galus, S. and Debeaufort, F. (2014) Surface, Mechanical and Barrier Properties of Bio-Based Composite Films Based on Chitosan and Whey Protein. Food Packaging and Shelf Life, 1, 56-67.
https://doi.org/10.1016/j.fpsl.2014.01.001
[75]  Dijkxhoorn, Y., van Galen, M., Barungi, J., Okiira, J., Gema, J. and Janssen, V. (2019) The Uganda Vegetables and Fruit Sector: Competitiveness, Investment and Trade Options. Wageningen Economic Research, Wageningen.
https://doi.org/10.18174/505785
[76]  Paull, R.E., Nishijima, W., Reyes, M. and Cavaletto, C. (1997) Postharvest Handling and Losses during Marketing of Papaya (Carica papaya L.). Postharvest Biology and Technology, 11, 165-179.
https://doi.org/10.1016/S0925-5214(97)00028-8
[77]  Maran, J.P. and Prakash, K.A. (2015) Process Variables Influence on Microwave Assisted Extraction of Pectin from Waste Carcia papaya L. Peel. International Journal of Biological Macromolecules, 73, 202-206.
https://doi.org/10.1016/j.ijbiomac.2014.11.008
[78]  Do Prado, S.B.R., Ferreira, G.F., Harazono, Y., Shiga, T.M., Raz, A., Carpita, N.C. and Fabi, J.P. (2017) Ripening-Induced Chemical Modifications of Papaya Pectin Inhibit Cancer Cell Proliferation. Scientific Reports, 7, Article No. 16564.
https://doi.org/10.1038/s41598-017-16709-3
[79]  Rachtanapun, P. (2009) Blended Films of Carboxymethyl Cellulose from Papaya Peel (CMCp) and Corn Starch. Kasetsart Journal: Natural Science, 43, 259-266.
[80]  Hattori, K., Abe, E., Yoshida, T. and Cuculo, J.A. (2004) New Solvents for Cellulose. II. Ethylenediamine/Thiocyanate Salt System. Polymer Journal, 36, 123-130.
https://doi.org/10.1295/polymj.36.123
[81]  Cagri, A., Ustunol, Z. and Ryser, E.T. (2002) Inhibition of Three Pathogens on Bologna and Summer Sausage Using Antimicrobial Edible Films. Journal of Food Science, 67, 2317-2324.
https://doi.org/10.1111/j.1365-2621.2002.tb09547.x
[82]  Rachtanapun, P., Kumthai, S., Yakee, N. and Uthaiyod, R. (2007) Production of Carboxymethylcellulose (CMC) Film from Papaya Peels and Its Mechanical Properties. Proceedings of the Annual Conference of the Kasetsart University, Bangkok, Thailand, 30 January-2 February 2007, 790-799.
[83]  Almasi, H., Ghanbarzadeh, B. and Entezami, A.A. (2010) Physicochemical Properties of Starch-CMC-Nanoclay Biodegradable Films. International Journal of Biological Macromolecules, 46, 1-5.
https://doi.org/10.1016/j.ijbiomac.2009.10.001
[84]  Westerlund, E., Åman, P., Andersson, R., Andersson, R.E. and Rahman, S.M.M. (1991) Chemical Characterization of Water-Soluble Pectin in Papaya Fruit. Carbohydrate Polymers, 15, 67-78.
https://doi.org/10.1016/0144-8617(91)90020-D
[85]  da Rocha, M., de Souza, M.M. and Prentice, C. (2018) Biodegradable Films: An Alternative Food Packaging. In: Grumezescu, A.M. and Holban, A.M., Eds., Food Packaging and Preservation, Academic Press, Cambridge, MA, 307-342.
https://doi.org/10.1016/B978-0-12-811516-9.00009-9
[86]  Eca, K.S., Machado, M.T.C., Hubinger, M.D. and Menegalli, F.C. (2015) Development of Active Films from Pectin and Fruit Extracts: Light Protection, Antioxidant Capacity, and Compounds Stability. Journal of Food Science, 80, C2389-C2396.
https://doi.org/10.1111/1750-3841.13074
[87]  Du, W.-X., Olsen, C.W., Avena-Bustillos, R.J., McHugh, T.H., Levin, C.E. and Friedman, M. (2008) Antibacterial Activity against E. coli O157:H7, physical Properties, and Storage Stability of Novel Carvacrol-Containing Edible Tomato Films. Journal of Food Science, 73, M378-M383.
https://doi.org/10.1111/j.1750-3841.2008.00892.x
[88]  McHugh, T.H., Huxsoll, C.C. and Krochta, J.M. (1996) Permeability Properties of Fruit Puree Edible Films. Journal of Food Science, 61, 88-91.
https://doi.org/10.1111/j.1365-2621.1996.tb14732.x
[89]  McHugh, T.H. and Senesi, E. (2000) Apple Wraps: A Novel Method to Improve the Quality and Extend the Shelf Life of Fresh-Cut Apples. Journal of Food Science, 65, 480-485.
https://doi.org/10.1111/j.1365-2621.2000.tb16032.x
[90]  Vij, T. and Prashar, Y. (2015) A Review on Medicinal Properties of Carica papaya Linn. Asian Pacific Journal of Tropical Disease, 5, 1-6.
https://doi.org/10.1016/S2222-1808(14)60617-4

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133