全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biophysics  2020 

急性缺血性脑卒中治疗中直接抽吸除栓术的血流动力学计算机仿真研究进展
Progress in the Computer Simulation Study of the Hemodynamics in Direct Aspiration Thrombectomy for the Treatment of Acute Ischemic Stroke

DOI: 10.12677/BIPHY.2020.84005, PP. 47-55

Keywords: 急性缺血性脑卒中,直接抽吸除栓术,血流动力学,计算机仿真研究
Acute Ischemic Stroke
, Direct Aspiration Thrombectomy, Hemodynamics, Computer Simulation Study

Full-Text   Cite this paper   Add to My Lib

Abstract:

在急性缺血性脑卒中的临床治疗中,直接抽吸除栓术作为一种新兴的微创介入治疗方法,在除栓效率、安全性、花费等方面相比于以前的方法均具有优势。为了促进直接抽吸除栓术在技术上的发展成熟,目前需要大力加强在对该技术所涉及的血流动力学机理的研究。本文回顾了当前应用计算机仿真对抽吸除栓过程进行血流动力学基础研究的相关进展,介绍和评注了文献中这方面研究的一系列研究工作,总结了当前工作所存在的问题,并对将来提出了具体的指导建议。
Among the clinical treatment options for the acute ischemic stroke, direct aspiration thrombectomy (DAT) as an emerging minimal invasive intervention technique has much advantage over the other treatment techniques, from the aspects of efficiency, safety, and procedure cost. To promote the technical maturity of DAT, it is important to strengthen study of the hemodynamics involved in DAT. This research reviewed the related concurrent hemodynamic studies of DAT using the computer simulation technique in the literature, introduced and commented on a series of studies in the field. The deficiencies of the current studies were summarized, and areas for future improvement sug-gested.

References

[1]  高峰, 陈康宁, 张学蕾, 等. 急性缺血性脑卒中介入治疗[M]//缺血性脑血管病介入治疗进展2015. 北京: 人民卫生出版社, 2015: 140-156.
[2]  胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3): 209-220.
[3]  Yeo, L.L.L. and Sharma, V.K. (2013) The Quest for Arterial Recanalization in Acute Ischemic Stroke—The Past, Present and the Future. Journal of Clinical Medicine Research, 5, 251-265.
https://doi.org/10.4021/jocmr1342w
[4]  Bhaskar, S., Stanwell, P., Cordato, D., et al. (2018) Reperfusion Therapy in Acute Ischemic Stroke: Dawn of a New Era? BMC Neurology, 18, Article No.: 8.
https://doi.org/10.1186/s12883-017-1007-y
[5]  中国卒中学会, 中国卒中学会神经介入分会, 中华预防医学会卒中预防与控制专业委员会介入学组. 急性缺血性卒中血管内治疗中国指南2018 [J]. 中国卒中杂志, 2018, 13(7): 706-729.
[6]  王拥军. 脑卒中诊疗王拥军2017观点[M]. 北京: 科学技术文献出版社, 2017.
[7]  缪中荣. 缺血性脑血管病介入治疗进展2015 [M]. 北京: 人民卫生出版社, 2015.
[8]  陈康宁. 急性缺血性脑卒中治疗的新曙光——机械取栓治疗[J]. 第三军医大学学报, 2013, 35(24): 2610-2613.
[9]  Lally, F., Grunwald, I.Q., Sanyal, R., et al. (2013) Mechanical Thrombectomy in Acute Ischaemic Stroke: A Review of the Literature, Clinical Effectiveness and Future Use. CNS & Neurological Disorders Drug Targets, 12, 170-190.
https://doi.org/10.2174/18715273112119990054
[10]  Spiotta, A., Fargen, K.M., Chaudry, I., et al. (2016) ADAPT: A Direct Aspiration First Pass Technique. Endovascular Today, Bryn Mawr Communications, 15, 68-70.
[11]  Turk, A.S., Frei, D., Fiorella, D., et al. (2018) ADAPT FAST Study: A Direct Aspiration First Pass Technique for Acute Stroke Thrombectomy. Journal of Neurointerventional Surgery, 10, i4-i7.
https://doi.org/10.1136/neurintsurg-2014-011125.rep
[12]  史宇兵, 董静, 付锋, 等. 急性缺血性脑卒中治疗中机械取栓术的发展[J]. 临床医学进展, 2020, 10(9): 2029-2037.
https://doi.org/10.12677/ACM.2020.109304
[13]  史宇兵, 李中健, 杨洪义, 等. 急性缺血性脑卒中治疗中直接抽吸取栓术的血流动力学机电模拟研究进展[J]. 实用心脑肺血管病杂志, 2020, 28(9): 119-125.
[14]  Taylor, C.A. and Figueroa, C.A. (2009) Patient-Specific Modeling of Cardiovascular Mechanics. Annual Review of Biomedical Engineering, 11, 109-134.
https://doi.org/10.1146/annurev.bioeng.10.061807.160521
[15]  Shi, Y., Lawford, P. and Hose, R. (2011) Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System. Biomedical Engineering Online, 10, Article No.: 33.
https://doi.org/10.1186/1475-925X-10-33
[16]  乔爱科, 刘有军. 面向医学应用的血流动力学数值模拟(Ⅰ): 动脉中的血流[J]. 北京工业大学学报, 2008(2): 189-196.
[17]  乔爱科, 刘有军, 贯建春, 等. 面向医学应用的血流动力学数值模拟(Ⅱ): 前景展望[J]. 北京工业大学学报, 2008(5): 544-550.
[18]  Romero, G., Higuera, I., Martinez, M.L., et al. (2010) Computational Modeling of a New Thrombectomy Device for the Extraction of Blood Clots. Advances in Experimental Medicine and Biology, 680, 627-633.
https://doi.org/10.1007/978-1-4419-5913-3_69
[19]  Romero, G., Martínez, L., Pearce, G., et al. (2013) An Investigation into the Performance of a New Mechanical Thrombectomy Device Using Bond Graph Modelling: Application to the Extraction of Blood Clots in the Middle Cerebral Artery. Simulation: Transactions of the Society for Modelling and Simulation International, 89, 381-391.
https://doi.org/10.1177/0037549712463418
[20]  Romero, G., Martinez, M.L., Maroto, J., et al. (2013) Blood Clot Simulation Model by Using the Bond-Graph Technique. The Scientific World Journal, 2013, Article ID: 519047.
https://doi.org/10.1155/2013/519047
[21]  Talayero, C., Romero, G., Pearce, G. and Wong, J. (2019) Numerical Modelling of Blood Clot Extraction by Aspiration Thrombectomy. Evaluation of Aspiration Catheter Geometry. Journal of Biomechanics, 94, 193-201.
https://doi.org/10.1016/j.jbiomech.2019.07.033
[22]  Pearce, G., Patrick, J.H. and Perkinson, N.D. (2007) A New Device for the Treatment of Thromboembolic Strokes. Journal of Stroke and Cerebrovascular Diseases, 16, 167-172.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2007.03.003
[23]  Pearce, G., Perkinson, N.D., Wong, J., et al. (2009) The “GP” Mechanical Thrombectomy Device. Journal of Stroke and Cerebrovascular Diseases, 18, 288-293.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2008.11.011
[24]  Neidlin, M., Büsen, M., Brockmann, C., et al. (2016) A Numerical Framework to Investigate Hemodynamics during Endovascular Mechanical Recanalization in Acute Stroke. International Journal for Numerical Methods in Biomedical Engineering, 32, e02748.
https://doi.org/10.1002/cnm.2748
[25]  Pearce, G., Perkinson, N.D., Wong, J., et al. (2010) In Vitro Testing of a New Aspiration Thrombus Device. Journal of Stroke and Cerebrovascular Diseases, 19, 121-129.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2009.03.017
[26]  Kang, D.-H., Hwang, Y.-H., Kim, Y.-S., et al. (2011) Direct Thrombus Retrieval Using the Reperfusion Catheter of the Penumbra System: Forced-Suction Thrombectomy in Acute Ischemic Stroke. American Journal of Neuroradiology, 32, 283-287.
https://doi.org/10.3174/ajnr.A2299
[27]  Kang, D.-H., Kim, J.W., Kim, B.M., et al. (2019) Need for Rescue Treatment and Its Implication: Stent Retriever versus Contact Aspiration Thrombectomy. Journal of Neurointerventional Surgery, 11, 979-983.
https://doi.org/10.1136/neurintsurg-2018-014696
[28]  Blanc, R., Redjem, H., Ciccio, G., et al. (2017) Predictors of the Aspiration Component Success of a Direct Aspiration First Pass Technique (ADAPT) for the Endovascular Treatment of Stroke Reperfusion Strategy in Anterior Circulation Acute Stroke. Stroke, 48, 1588-1593.
https://doi.org/10.1161/STROKEAHA.116.016149
[29]  Spiotta, A.M., Chaudry, M.I., Hui, F.K., et al. (2015) Evolution of Thrombectomy Approaches and Devices for Acute Stroke: A Technical Review. Journal of Neurointerventional Surgery, 7, 2-7.
https://doi.org/10.1136/neurintsurg-2013-011022
[30]  Turk, A.S., Spiotta, A., Frei, D., et al. (2014) Initial Clinical Experience with the ADAPT Technique: A Direct Aspiration First Pass Technique for Stroke Thrombectomy. Journal of Neurointerventional Surgery, 6, 231-237.
https://doi.org/10.1136/neurintsurg-2013-010713
[31]  Lally, F., Soorani, M., Woo, T., et al. (2016) In Vitro Experiments of Cerebral Blood Flow during Aspiration Thrombectomy: Potential Effects on Cerebral Perfusion Pressure and Collateral Flow. Journal of Neurointerventional Surgery, 8, 969-972.
https://doi.org/10.1136/neurintsurg-2015-011909
[32]  Shi, Y., Cheshire, D., Lally, F. and Roffe, C. (2017) Suction Force-Suction Distance Relation during Aspiration Thrombectomy for Ischemic Stroke: A Computational Fluid Dynamics Study. Physics in Medicine, 3, 1-8.
https://doi.org/10.1016/j.phmed.2016.11.001
[33]  Chitsaz, A., Nejat, A. and Nouri, R. (2018) Three-Dimensional Numerical Simulations of Aspiration Process: Evaluation of Two Penumbra Aspiration Catheters Performance. Artificial Organs, 42, E406-E419.
https://doi.org/10.1111/aor.13300
[34]  Bajd, F. and Ser?a, I. (2013) Mathematical Modeling of Blood Clot Fragmentation during Flow-Mediated Thrombolysis. Biophysical Journal, 104, 1181-1190.
https://doi.org/10.1016/j.bpj.2013.01.029
[35]  Cunnane, C.V., Cunnane, E.M. and Walsh, M.T. (2017) A Review of the Hemodynamic Factors Believed to Contribute to Vascular Access Dysfunction. Cardiovascular Engineering and Technology, 8, 280-294.
https://doi.org/10.1007/s13239-017-0307-0
[36]  Good, B.C., Simon, S., Manning, K. and Costanzo, F. (2020) Development of a Computational Model for Acute Ischemic Stroke Recanalization through Cyclic Aspiration. Biomechanics and Modeling in Mechanobiology, 19, 761-778.
https://doi.org/10.1007/s10237-019-01247-w
[37]  Pennati, G., Balossino, R., Dubini, G., et al. (2010) Numerical Simulation of Thrombus Aspiration in Two Realistic Models of Catheter Tips. Artificial Organs, 34, 301-310.
https://doi.org/10.1111/j.1525-1594.2009.00770.x
[38]  Soleimani, S., Dubini, G. and Pennati, G. (2014) Possible Benefits of Catheters with Lateral Holes in Coronary Thrombus Aspiration: A Computational Study for Different Clot Viscosities and Vacuum Pressures. Artificial Organs, 38, 845- 855.
https://doi.org/10.1111/aor.12274

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413