Quantum chemistry methods were performed in order to characterize the chemical reactivity on series of imidazo[1,2-a]pyridinyl-chalcone (IPC). In particular, the B3LYP/6-311G(d) theory level has been used to determine parameters which characterize the global and local reactivity on five molecules of the series. These compounds differ from one to another with the aryl groups. There are: 1-(2-methylimidazo[1,2-a]pyridin-3-yl)-3-phenylprop-2-en-1-one, 3-(4-fluorophenyl)-1-(2-methylimidazo [1,2-a]pyridin-3-yl)prop-2-en-1-one, 3-[4-(dimethylamino)phenyl]-1-(2-methylimidazo [1,2-a]pyridin- 3-yl)prop-2-en-1-one, 3-(2,4-dichlorophenyl)-1-(2-methylimidazo [1,2-a]pyridin-3-yl)prop-2-en-1-one, 3-(2,4-dichlorophenyl)-1-(2-methylimidazo [1,2-a]pyridin-3-yl)prop-2-en-1-one. All results lead to finding out that local nucleophilicity and electrophilicity of compounds are not substituent-dependant contrarily to their global nucleophilicity which prove to be more sensitive to the electron-donating character of the substituents. 3-[4-(Dimethylamino) phenyl]-1-(2-methylimidazo[1,2-a]pyridin-3-yl)prop-2-en-1-one was identified as the unique nucleophile compound by global reactivity. Respectively, the carbon atoms C5 and C14 are the prediction sites of electrophilic and nucleophilic attacks in the molecular skeleton of both molecules. Identification of interactions centres on IPC series is of great importance for organic synthesis and medicinal chemistry where the molecular hybridization strategy is very often used to improve biological activities of interesting therapeutic systems.
References
[1]
Chandrabose, K., Narayana, S.H., Narayana, M., Sakthivel, R., Uma Vanam, Elangovan, M., Devarajan, K. and Piyush, T. (2015) Advances in Chalcones with Anticancer Activities. Recent Patents on Anti-Cancer Drug Discovery, 10, 97-115. https://doi.org/10.2174/1574892809666140819153902
[2]
Dimmock, J.R., Elias, D.W., Beazely, M.A. and Kandepu, N.M. (1999) Bioactivities of Chalcones. Current Medicinal Chemistry, 6, 1125-1149.
[3]
Batovska, D.I. and Todorova, I.T. (2010) Trends in Utilization of the Pharmacological Potential of Chalcones. Current Clinical Pharmacology, 5, 1-29. https://doi.org/10.2174/157488410790410579
[4]
Sahu, N.K., Balbhadra, S.S., Choudhary, J. and Kohli, D.V. (2012) Exploring Pharmacological Significance of Chalcone Scaffold: A Review. Current Medicinal Chemistry, 19, 209-225. https://doi.org/10.2174/092986712803414132
[5]
Dhar, D.N. (1981) The Chemistry of Chalcones and Related Compounds. Wiley, New York.
[6]
Das, B.P., Choudhury, T.R., Das, G.K., Choudhury, B. and Chowdhury, D.N. (1995) Comparative Larvicidal Activity of Some Chalcones on the Larvae of Culex Quinquefasciatus. Environment & Ecology, 13, 694-697.
[7]
Lahtchev, K.L., Batovska, D.I., Parushev, S.P., Ubiyvovk, V.M. and Sibirny, A.A. (2008) Antifungal Activity of Chalcones: A Mechanistic Study Using Various Yeast Strains. European Journal of Medicinal Chemistry, 43, 2220-2228. https://doi.org/10.1016/j.ejmech.2007.12.027
[8]
Bag, S., Ramar, S. and Degani, M.S. (2009) Synthesis and Biological Evaluation of α, β-Unsaturated Ketone as Potential Antifungal Agents. Medicinal Chemistry Research, 18, 309-316. https://doi.org/10.1007/s00044-008-9128-x
[9]
Awasthi, S.K., Mishra, N., Dixit, S.K., Singh, A., Yadav, M., Yadav, S.S. and Rathaur, S. (2009) Antifilarial Activity of 1,3-Diarylpropen-1-one: Effect on Glutathione-S- Transferase, A Phase-II Detoxification Enzyme. The American Journal of Tropical Medicine and Hygiene, 80, 764-768. https://doi.org/10.4269/ajtmh.2009.80.764
[10]
Sissouma, D., Ouattara, M., Koné, M.W., Menan, H.E., Adjou, A. and Ouattara, L. (2011) Synthesis and in Vitro Nematicidal Activity of New Chalcones Vectorised by Imidazopyridine. Africa Journal of Pharmacy and Pharmacology, 5, 2086-2093. https://doi.org/10.5897/AJPP11.550
[11]
Bagdi, A.K., Santra, S., Monir, K. and Hajra, A. (2015) Synthesis of Imidazo[1,2-a] pyridines: A Decade Update. Chemical Communications, 51, 1555-1575. https://doi.org/10.1039/C4CC08495K
[12]
Kuthyala, S., Nagaraja, G.K., Sheik, S., Hanumanthappa, M. and Kumar, M.S. (2019) Synthesis of Imidazo[1, 2-a]pyridine-chalcones as Potent Inhibitors against A549 Cell Line and Their Crystal Studies, Journal of Molecular Structure, 1177, 381-390. https://doi.org/10.1016/j.molstruc.2018.09.087
[13]
Rao, N.S., Kistareddy, C., Balram, B. and Ram, B. (2012) Synthesis and Antibacterial Activity of Novel Imidazo[1,2-a]pyrimidine and Imidazo[1,2-a]pyridine Chalcones Derivatives. Der Pharma Chemica, 4, 2408-2415.
[14]
Thomas, A.S., Nahossé, Z. and Kafoumba, B. (2015) Determination, par des méthodes ab initio et DFT, des sites et énergies de protonation d’une série de molécules d’imidazopyridinyl-chalcones substituées. European Scientific Journal, 11, 148-158.
[15]
Affi, T.S., Ziao, N., Ouattara, M., Sissouma, D. and Yapo, K. (2014) Caractérisation théorique des sites d’interaction par liaison hydrogène de 3-(4-isopropylphenyl)-1- (2-méthylimidazopyridin-3-yl)prop-2-en-1-one et de 3-(2-méthoxyphenyl)-1-(2- méthylimidazopyridin-3-yl)prop-2-en-1-one. European Journal of Scientific Research, 123, 340-347.
[16]
Gadkari, S., Choudhari, P., Bhatia, M., Khetmar, S. and Jadhav, S. (2012) 3D QSAR, Pharmacophore Identification Studies on Series of Imidazopyridine Analogs as Nematicidal Activity. Pharmacophore, 3, 199-208.
[17]
Aksöz, B.E. and Ertan, R. (2011) Chemical and Structural Properties of Chalcones I. FABAD Journal of Pharmaceutical Sciences, 36, 223-242.
[18]
Parr, R.G., Szentpály, L.V. and Liu, S. (1999) Electrophilicity Index. Journal of the American Chemical Society, 121, 1922-1924. https://doi.org/10.1021/ja983494x
[19]
Domingo, L.R., Aurell, M.J., Pérez, P. and Contreras, R. (2002) Quantitative Characterization of the Global Electrophilicity Power of Common Diene/Dienophile Pairs in Diels-Alder Reactions. Tetrahedron, 58, 4417-4423. https://doi.org/10.1016/S0040-4020(02)00410-6
[20]
Eyring, H. and Polanyi, M. (2013) On Simple Gas Reactions. Zeitschrift für Physikalische Chemie, 227, 1221-1245. https://doi.org/10.1524/zpch.2013.9023
[21]
Eyring, H. (1935) The Activated Complex in Chemical Reactions. The Journal of Chemical Physics, 3, 107-115. https://doi.org/10.1063/1.1749604
[22]
Geerlings, P., De Proft, F. and Langenaeker, W. (2003) Conceptual Density Functional Theory. Chemical Reviews, 103, 1793-1873. https://doi.org/10.1021/cr990029p
[23]
Parr, R.G. and Yang, W. (1989) Density Functional Theory of Atoms and Molecules. Oxford University Press, New York.
[24]
Parr, R.G. and Pearson, R.G. (1983) Absolute Hardness: Companion Parameter to Absolute Electronegativity. Journal of the American Chemical Society, 105, 7512-7516. https://doi.org/10.1021/ja00364a005
[25]
Domingo, L.R., Chamorro, E. and Pérez, P. (2008) Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions; a Theoretical Study. The Journal of Organic Chemistry, 73, 4615-4624. https://doi.org/10.1021/jo800572a
[26]
Pérez, P., Domingo, L.R., Duque-Noreña, M. and Chamorro, E. (2009) A Condensed-to-Atom Nucleophilicity Index. An Application to the Director Effects on the Electrophilic Aromatic Substitutions. Journal of Molecular Structure (Theochem), 895, 86-91. https://doi.org/10.1016/j.theochem.2008.10.014
[27]
Jaramillo, P., Domingo, L.R., Chamorro, E. and Pérez, P. (2008) A Further Exploration of a Nucleophilicity Index Based on the Gas-Phase Ionization Potentials. Journal of Molecular Structure (Theochem), 865, 68-72. https://doi.org/10.1016/j.theochem.2008.06.022
[28]
Domingo, L.R., Aurell, M.J., Pérez, P. and Contreras, R. (2002) Quantitative Characterization of the Local Electrophilicity of Organic Molecules. Understanding the Regioselectivity on Diels-Alder Reactions. The Journal of Physical Chemistry A, 106, 6871-6875. https://doi.org/10.1021/jp020715j
[29]
Morell, C., Grand, A. and Toro-Labbé, A. (2005) New Dual Descriptor for Chemical Reactivity. The Journal of Physical Chemistry A, 109, 205-212. https://doi.org/10.1021/jp046577a
[30]
Chattaraj, P.K., Duleya, S. and Domingo, L.R. (2012) Understanding Local Electrophilicity/Nucleophilicity Activation through a Single Reactivity Difference Index. Organic and Biomolecular Chemistry, 10, 2855-2861. https://doi.org/10.1039/c2ob06943a
[31]
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J. (2009) Gaussian 09, Revision A.1. Gaussian Inc., Wallingford.