全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
CellBio  2020 

Regulation of Hematopoietic Activity Involving New Interacting Partners (RRAGC & PSMC2, CKAP4 & MANF and CTR9 & CNTNAP2)

DOI: 10.4236/cellbio.2020.93007, PP. 123-141

Keywords: Hematopoietic Stem Cells (HSCs), Signal Transduction, Haematopoiesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hematopoietic stem cells (HSCs) are tissue-specific cells giving rise to all mature blood cell types regulated by a diverse group of hematopoietic cytokines and growth factors that influences the survival & proliferation of early progenitors and differentiation mechanisms by modulating the functional activities of HSCs. In this study, the functional yet distinctive role of three novel combinations of gene pairs RRAGC & PSMC2; CKAP4 & MANF; and CTR9 & CNTNAP2 have been newly identified. These novel combinations of genes were confirmed and expressed in K562 human leukemic cell line in the presence of cytokine combination (IL-3, FLT-3 and SCF) using RT-PCR and siRNA-mediated gene knock down strategy. This study signifies the synergistic role of gene pairs in different molecular activities like ubiquitination or proteasomal degradation, calcium mobilization, dopamine signaling.

References

[1]  Kim, A., Stachura, D. and Traver, D. (2014) Cell Signaling Pathways Involved in Hematopoietic Stem Cell Specification. Experimental Cell Research, 329, 227-233.
https://doi.org/10.1016/j.yexcr.2014.10.011
[2]  Chotinantakul, K. and Leeanansaksiri, W. (2012) Hematopoietic Stem Cell Development, Niches, and Signaling Pathways. Bone Marrow Research, 2012, Article ID: 270425.
[3]  Smithgall, T.E. (1998) Signal Transduction Pathways Regulating Hematopoietic Differentiation. Pharmacological Reviews, 50, 1-19.
[4]  Guo, H.B., Isserlin, R., Chen, X.J., Wang, W.J., Phanse, S., Zandstra, P.W., Paddison, P.J. and Emili, A. (2013) Integrative Network Analysis of Signaling in Human CD34+ Hematopoietic Progenitor Cells by Global Phosphoproteomic Profiling Using TiO2 Enrichment Combined with 2D LC-MS/MS and Pathway Mapping. Proteomics, 13, 1325-1333. https://doi.org/10.1002/pmic.201200369
[5]  Sharma, S., Gurudutta, G.U. and Singh, U. (2017) Stem Cell Genes Synergism: Elucidation of the Mechanistic Basis of Response Induced by Cytokine Combination (IL-3, FLT-3 and SCF). Journal of Stem Cells, 12, 143-160.
[6]  Laplante, M. and Sabatini, D.M. (2012) mTOR Signaling in Growth Control and Disease. Cell, 149, 274-293.
https://doi.org/10.1016/j.cell.2012.03.017
[7]  Mendoza, M.C., Er, E.E. and Blenis, J. (2011) The Ras-ERK and PI3K-mTOR Pathways: Cross-Talk and Compensation. Trends in Biochemical Sciences, 36, 320-328.
https://doi.org/10.1016/j.tibs.2011.03.006
[8]  Pópulo, H., Lopes, J.M. and Soares, P. (2012) The mTOR Signalling Pathway in Human Cancer. International Journal of Molecular Sciences, 13, 1886-1918.
https://doi.org/10.3390/ijms13021886
[9]  Sekiguchi, T., Hirose, E., Nakashima, N., Ii, M. and Nishimoto, T. (2001) Novel G Proteins, Rag C and Rag D, Interact with GTP-Binding Proteins, Rag A and Rag B. The Journal of Biological Chemistry, 276, 7246-7257.
https://doi.org/10.1074/jbc.M004389200
[10]  Berridge, M.J. (2014) Cell Signaling Biology.
[11]  Zhao, J.H.., Zhai, B., Gygi, S.P. and Goldberg, A.L. (2015) mTOR Inhibition Activates Overall Protein Degradation by the Ubiquitin Proteasome System as Well as by Autophagy. Proceedings of the National Academy of Sciences of the United States of America, 112, 15790-15797. https://doi.org/10.1073/pnas.1521919112
[12]  Kanayama, H.O., Tamura, T., Ugai, S., Kagawa, S., Tanahashi, N., Yoshimura, T., Tanaka, K. and Ichihara, A. (1992) Demonstration That a Human 26S Proteolytic Complex Consists of a Proteasome and Multiple Associated Protein Components and Hydrolyzes ATP and Ubiquitin-Ligated Proteins by Closely Linked Mechanisms. European Journal of Biochemistry, 206, 567-578.
https://doi.org/10.1111/j.1432-1033.1992.tb16961.x
[13]  Tuffy, K.M. and Planey, S.L. (2012) Cytoskeleton-Associated Protein 4: Functions Beyond the Endoplasmic Reticulum in Physiology and Disease. International Scholarly Research Notices, 2012, Article ID: 142313.
[14]  Nikonov, A.V., Hauri, H.P., Lauring, B. and Kreibich, G. (2007) Climp-63-Mediated Binding of Microtubules to the ER Affects the Lateral Mobility of Translocon Complexes. Journal of Cell Science, 120, 2248-2258.
https://doi.org/10.1242/jcs.008979
[15]  Klopfenstein, D.R.S., Kappeler, F. and Hauri, H.P. (1998) A Novel Direct Interaction of Endoplasmic Reticulum with Microtubules. The EMBO Journal, 17, 6168-6177.
https://doi.org/10.1093/emboj/17.21.6168
[16]  Ortega, A., Roselló-Lletí, E., Tarazón, E., Molina-Navarro, M.M., Martínez-Dolz, L. and González-Juanatey, J.R. (2014) Endoplasmic Reticulum Stress Induces Different Molecular Structural Alterations in Human Dilated and Ischemic Cardiomyopathy. PLoS ONE, 9, e107635. https://doi.org/10.1371/journal.pone.0107635
[17]  Lee, C. and Chen, L.B. (1988) Dynamic Behavior of Endoplasmic Reticulum in Living Cells. Cell, 54, 37-46.
https://doi.org/10.1016/0092-8674(88)90177-8
[18]  Schweizer, A., Peter, F., Van, P.N., Söling, H.D. and Hauri, H.P. (1993) A Luminal Calcium-Binding Protein with a KDEL Endoplasmic Reticulum Retention Motif in the ER-Golgi Intermediate Compartment. European Journal of Cell Biology, 60, 366-370.
[19]  Kim, Y., Park, S.J. and Chen, Y.M. (2017) Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF), a New Player in Endoplasmic Reticulum Diseases: Structure, Biology, and Therapeutic Roles. Translational Research, 188, 1-9.
https://doi.org/10.1016/j.trsl.2017.06.010
[20]  Henderson, M.J., Richie, C.T., Airavaara, M., Wang, Y. and Harvey, B.K. (2013) Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Secretion and Cell Surface Binding Are Modulated by KDEL Receptors. The Journal of Biological Chemistry, 288, 4209-4225. https://doi.org/10.1074/jbc.M112.400648
[21]  De Young, M.B., Keller, J.C., Graham, R.M. and Wildey, G.M. (1994) Brefeldin A Defines Distinct Pathways for Atrial Natriuretic Factor Secretion in Neonatal rat Atrial and Ventricular Myocytes. Circulation Research, 74, 33-40.
https://doi.org/10.1161/01.RES.74.1.33
[22]  Petrova, P., Raibekas, A., Pevsner, J. Vigo, N., Anafi, M., Moore, M.K., et al. (2003) MANF. A New Mesencephalic, Astrocyte-Derived Neurotrophic Factor with Selectivity for Dopaminergic Neurons. Journal of Molecular Neuroscience, 20, 173-188.
https://doi.org/10.1385/JMN:20:2:173
[23]  Montero, M., Barrero, M.J. and Alvarez, J. (1997) Ca2+ Microdomains Control Agonist-Induced Ca2+ Release in Intact HeLa Cells. The FASEB Journal, 11, 881-885.
https://doi.org/10.1096/fasebj.11.11.9285486
[24]  Meldolesi, J. and Pozzan, T. (1998) The Endoplasmic Reticulum Ca2+ Store: A View from the Lumen. Trends in Biochemical Sciences, 23, 10-14.
https://doi.org/10.1016/S0968-0004(97)01143-2
[25]  Treiman, M. (2002) Regulation of the Endoplasmic Reticulum Calcium Storage during the Unfolded Protein Response. Significance in Tissue Ischemia? Trends in Cardiovascular Medicine, 12, 57-62.
https://doi.org/10.1016/S1050-1738(01)00147-5
[26]  Glembotski, C.C., Thuerauf, D.J., Huang, C.Q., Vekich, J.A., Gottlieb, R.A. and Doroudgar, S. (2012) Mesencephalic Astrocyte-Derived Neurotrophic Factor Protects the Heart from Ischemic Damage and Is Selectively Secreted upon Sarco/Endoplasmic Reticulum Calcium Depletion. The Journal of Biological Chemistry, 287, 25893-5904.
https://doi.org/10.1074/jbc.M112.356345
[27]  Zeng, H. and Xu, W. (2015) Ctr9, a Key Subunit of PAFc, Affects Global Estrogen Signaling and Drives ERα-Positive Breast Tumorigenesis. Genes & Development, 29, 2153-2167. https://doi.org/10.1101/gad.268722.115
[28]  Levin, E.R. (2005) Integration of the Extranuclear and Nuclear Actions of Estrogen. Molecular Endocrinology, 19, 1951-959.
https://doi.org/10.1210/me.2004-0390
[29]  De Gois, S., Slama, P., Pietrancosta, N., Erdozain, A.M., Louis, F., Bouvrais-Veret, C., Daviet, L. and Giros, B. (2015) Ctr9, a Protein in the Transcription Complex Paf1, Regulates Dopamine Transporter Activity at the Plasma Membrane. The Journal of Biological Chemistry, 290, 17848-17862.
https://doi.org/10.1074/jbc.M115.646315
[30]  Nieoullon, A. (2002) Dopamine and the Regulation of Cognition and Attention. Progress in Neurobiology, 67, 53-83.
https://doi.org/10.1016/S0301-0082(02)00011-4
[31]  Giros, B. and Caron, M.G. (1993) Molecular Characterization of the Dopamine Transporter. Trends in Pharmacological Sciences, 14, 43-49.
https://doi.org/10.1016/0165-6147(93)90029-J
[32]  Chang, M.-Y., Lee, S.-H., Kim, J.-H., Lee, K.-H., Kim, Y.-S., Son, H. and Lee, Y.-S. (2001) Protein Kinase C-Mediated Functional Regulation of Dopamine Transporter Is Not Achieved by Direct Phosphorylation of the Dopamine Transporter Protein. Journal of Neurochemistry, 77, 754-761.
https://doi.org/10.1046/j.1471-4159.2001.00284.x
[33]  Lee, F.J.S., Liu, F., Pristupa, Z.B. and Niznik, H.B. (2001) Direct Binding and Functional Coupling of α-Synuclein to the Dopamine Transporters Accelerate Dopamine-Induced Apoptosis. The FASEB Journal, 15, 916-926.
https://doi.org/10.1096/fsb2fj000334com
[34]  Cao, J., Dwyer, J.B., Mangold, J.E., Wang, J., Wei, J., Leslie, F.M., et al. (2011) Modulation of Cell Adhesion Systems by Prenatal Nicotine Exposure in Limbic Brain Regions of Adolescent Female Rats. International Journal of Neuropsychopharmacology, 14, 157-174. https://doi.org/10.1017/S1461145710000179
[35]  Rzehak, P., Saffery, R., Reischl, E., Covic, M., Wahl, S., Grote, V., et al. (2016) Maternal Smoking during Pregnancy and DNA-Methylation in Children at Age 5.5 Years: Epigenome-Wide-Analysis in the European Childhood Obesity Project (CHOP)-Study. PLoS ONE, 11, e0155554.
https://doi.org/10.1371/journal.pone.0155554
[36]  Denisenko-Nehrbass, N., Oguievetskaia, K., Goutebroze, L., Galvez, T., Yamakawa, H., Ohara, O., Carnaud, M. and Girault, J.-A. (2003) Protein 4.1B Associates with Both Caspr/Paranodin and Caspr2 at Paranodes and Juxtaparanodes of Myelinated Fibres. European Journal of Neuroscience, 17, 411-416.
https://doi.org/10.1046/j.1460-9568.2003.02441.x
[37]  Hemming, N.J., Anstee, D.J., Mawby, W.J., Reid, M.E. and Tanner, M.J. (1994) Localization of the Protein 4.1-Bindimng Site on Human Erythrocyte Glycophorins C and D. Biochemical Journal, 299, 191-196.
https://doi.org/10.1042/bj2990191
[38]  Marfatia, S.M., Lue, R.A., Branton, D. and Chishti, A.H. (1995) Identification of the Protein 4.1 Binding Interface on Glycophorin C and p55, a Homologue of the Drosophila Discs-Large Tumor Suppressor Protein. The Journal of Biological Chemistry, 270, 715-719. https://doi.org/10.1074/jbc.270.2.715
[39]  Dupree, J.L., Girault, J.A. and Popko, B. (1999) Axo-Glial Interactions Regulate the Localization of Axonal Paranodal Proteins. Journal of Cell Biology, 147, 1145-1152.
https://doi.org/10.1083/jcb.147.6.1145
[40]  Peles, E., Nativ, M., Lustig, M., Grumet, M., Schilling, J., Martinez, R., et al. (1996) Identification of a Novel Contac-Tin-Associated Transmembrane Receptor with Multiple Domains Implicated in Protein-Protein Interactions. The EMBO Journal, 16, 978-988. https://doi.org/10.1093/emboj/16.5.978

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413