全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Using MAN and Coastal AERONET Measurements to Assess the Suitability of MODIS C6.1 Aerosol Optical Depth for Monitoring Changes from Increased Arctic Shipping

DOI: 10.4236/ojap.2020.94006, PP. 77-104

Keywords: Aerosol Optical Depth over the Arctic Ocean, MODIS Evaluation by AERONET and MAN Data, Changes in Arctic Aerosol Optical Depth over the Ocean North of 59.9°N, Arctic Shipping Season Aerosol Optical Depths

Full-Text   Cite this paper   Add to My Lib

Abstract:

Collocated data of the moderate resolution imaging spectroradiometer (MO-DIS) Collection 6.1 aerosol optical depths (AOD) at 3 km × 3 km north of 59.9°N over ocean were assessed at 550 nm by aerosol robotic network (AERONET) data from coastal sites and marine aerosol network (MAN) data from vessels during June to October 2006 to 2018. Typically, MODIS AOD was higher at low and lower at high values than the AERONET AOD. Discrepancies were largest for sites where the Earth’s surface around the site is very heterogeneous (Canadian Archipelago, coast of Greenland). Due to the higher likelihood for sea-ice, MAN and MODIS AOD differed stronger west of Greenland and over the Beaufort Sea than at location in the Greenland and Norwegian Seas and Atlantic. MODIS AOD well captured the inter-seasonal variability found in the AERONET AOD data (R = 0.933). At all sites, MO-DIS and AERONET AOD agreement improved as time progressed in the shipping season, hinting at errors in sea-ice vs. open water classification. Overall 75.3% of the MODIS AOD data fell within the limits of the error envelops of the AERONET/MAN AOD data with MAN ranging between 87.5% and 100%. Changes in both MODIS and AERONET mean AOD between two periods of same length (2006-2011, 2013-2018) were explainable by changes in emissions for all sites.

References

[1]  Law, K.S., Stohl, A., Quinn, P.K., Brock, C.A., Burkhart, J.F., Paris, J.-D., Ancellet, G., Singh, H.B., Roiger, A., Schlager, H., Dibb, J.E., Jacob, D.J., Arnold, S.R., Pelon, J. and Thomas, J.L. (2014) Arctic Air Pollution: New Insights from Polarcat-IPY. Bulletin of the American Meteorological Society, 95, 1873-1895.
https://doi.org/10.1175/BAMS-D-13-00017.1
[2]  Tomasi, C., Kokhanovsky, A.A., Lupi, A., Ritter, C., Smirnov, A., O’Neill, N.T., Stone, R.S., Holben, B.N., Nyeki, S., Wehrli, C., Stohl, A., Mazzola, M., Lanconelli, C., Vitale, V., Stebel, K., Aaltonen, V., de Leeuw, G., Rodriguez, E., Herber, A.B., Radionov, V.F., Zielinski, T., Petelski, T., Sakerin, S.M., Kabanov, D.M., Xue, Y., Mei, L., Istomina, L., Wagener, R., McArthur, B., Sobolewski, P.S., Kivi, R., Courcoux, Y., Larouche, P., Broccardo, S. and Piketh, S.J. (2015) Aerosol Remote Sensing in Polar Regions. Earth Science Reviews, 140, 108-157.
https://doi.org/10.1016/j.earscirev.2014.11.001
[3]  Corbett, J.J., Lack, D.A., Winebrake, J.J., Harder, S., Silberman, A.J. and Gold, M. (2010) Arctic Shipping Emissions Inventories and Future Scenarios. Atmospheric Chemistry and Physics, 10, 9689-9704.
https://doi.org/10.5194/acp-10-9689-2010
[4]  Jacob, D.J., Crawford, J.H., Maring, H., Clarke, A.D., Dibb, J.E., Emmons, L.K., Ferrare, R.A., Hostetler, C.A., Russell, P.B., Singh, H.B., Thompson, A.M., Shaw, G.E., McCauley, E., Pederson, J.R. and Fisher, J.A. (2010) The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCATS) Mission: Design, Execution, and First Results. Atmospheric Chemistry and Physics, 10, 5191-5212.
https://doi.org/10.5194/acp-10-5191-2010
[5]  Mölders, N., Porter, S.E., Tran, T.T., Cahill, C.F., Mathis, J. and Newby, G.B. (2011) The Effect of Unregulated Ship Emissions for Aerosol and Sulfur Dioxide Concentrations in Southwestern Alaska. In: Eicken, H. and Lovecraft, A., Eds., North by 2020. University of Alaska Press, Fairbanks, 14 p.
[6]  Mölders, N., Gende, S. and Pirhalla, M.A. (2013) Assessment of Cruise-Ship Activity Influences on Emissions, Air Quality, and Visibility in Glacier Bay National Park. Atmospheric Pollution Research, 4, 435-445.
https://doi.org/10.5094/APR.2013.050
[7]  Roiger, A., Thomas, J.L., Schlager, H., Law, K.S., Kim, J., Schäfler, A., Weinzierl, B., Dahlkötter, F., Krisch, I., Marelle, L., Minikin, A., Raut, J.C., Reiter, A., Rose, M., Scheibe, M., Stock, P., Baumann, R., Bouarar, I., Clerbaux, C., George, M., Onishi, T. and Flemming, J. (2014) Quantifying Emerging Local Anthropogenic Emissions in the Arctic Region: The Access Aircraft Campaign Experiment. Bulletin of the American Meteorological Society, 96, 441-460.
https://doi.org/10.1175/BAMS-D-13-00169.1
[8]  Marelle, L., Thomas, J.L., Raut, J.-C., Law, K.S., Jalkanen, J.-P., Johansson, L., Roiger, A., Schlager, H., Kim, J., Reiter, A. and Weinzierl, B. (2015) Air Quality and Radiative Impacts of Arctic Shipping Emissions in the Summertime in Northern Norway: From the Local to the Regional Scale. Atmospheric Chemistry and Physics, 16, 2359-2379.
https://doi.org/10.5194/acpd-15-18407-2015
[9]  Seinfeld, J.H. and Pandis, S.N., (1997) Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Cambridge University Press, Cambridge.
[10]  Huang, K. and Fu, J.S. (2016) A Global Gas Flaring Black Carbon Emission Rate Dataset from 1994 to 2012. Scientific Data, 3, Article No. 160104.
https://doi.org/10.1038/sdata.2016.104
[11]  Anejionu, O.C.D., Blackburn, G.A. and Whyatt, J.D. (2015) Detecting Gas Flares and Estimating Flaring Volumes at Individual Flow Stations Using MODIS Data. Remote Sensing of the Environment, 158, 81-94.
https://doi.org/10.1016/j.rse.2014.11.018
[12]  Mölders, N. and Kramm, G. (2018) Climatology of Air Quality in Arctic Cities— Inventory and Assessment. Open Journal of Atmospheric Pollution, 7, 48-93.
https://doi.org/10.4236/ojap.2018.71004
[13]  Stroeve, J., Serreze, M., Holland, M., Kay, J., Malanik, J. and Barrett, A. (2012) The Arctic’s Rapidly Shrinking Sea Ice Cover: A Research Synthesis. Climatic Change, 110, 1005-1027.
https://doi.org/10.1007/s10584-011-0101-1
[14]  Pizzolato, L., Howell, S.L., Derksen, C., Dawson, J. and Copland, L. (2014) Changing Sea Ice Conditions and Marine Transportation Activity in Canadian Arctic Waters between 1990 and 2012. Climatic Change, 123, 161-173.
https://doi.org/10.1007/s10584-013-1038-3
[15]  Snyder, J.M. (2007) The Polar Tourism Markets. In: Snyder, J.M., Eds., Prospects for Polar Tourism, CABI, Wallingford, 51-70.
https://doi.org/10.1079/9781845932473.0051
[16]  Ellis, B. and Brigham, L. (2009) Arctic Marine Shipping Assessment 2009. Report 194, Arctic Council, Romsa.
[17]  Stewart, E.J., Dawson, J., Howell, S.E.L., Johnston, M.E., Pearce, T. and Lemelin, H. (2013) Local-Level Responses to Sea Ice Change and Cruise Tourism in Arctic Canada’s Northwest Passage. Polar Geography, 36, 142-162.
https://doi.org/10.1080/1088937X.2012.705352
[18]  Frey, K.E., Moore, G.W.K., Cooper, L.W. and Grebmeier, J.M. (2015) Divergent Patterns of Recent Sea Ice Cover across the Bering, Chukchi, and Beaufort Seas of the Pacific Arctic Region. Progress in Oceanography, 136, 32-49.
https://doi.org/10.1016/j.pocean.2015.05.009
[19]  Berkman, P.A., Vylegzhanin, A.N. and Young, O.R. (2016) Governing the Bering Strait Region: Current Status, Emerging Issues and Future Options. Ocean Development and International Law, 47, 186-217.
https://doi.org/10.1080/00908320.2016.1159091
[20]  Walsh, J.E., Fetterer, F., Scott Stewart, J. and Chapman, W.L. (2017) A Database for Depicting Arctic Sea Ice Variations Back to 1850. Geographical Reviews, 107, 89-107.
https://doi.org/10.1111/j.1931-0846.2016.12195.x
[21]  Huntington, H.P., Daniel, R., Hartsig, A., Harun, K., Heiman, M., Meehan, R., Noongwook, G., Pearson, L., Prior-Parks, M., Robards, M. and Stetson, G. (2015) Vessels, Risks, and Rules: Planning for Safe Shipping in Bering Strait. Marine Policy, 51, 119-127.
https://doi.org/10.1016/j.marpol.2014.07.027
[22]  Holben, B.N., Tanre, D., Smirnov, A., Eck, T.F., Slutsker, I., Abuhassan, N., Newcomb, W.W., Schafer, J.S., Chatenet, B., Lavenu, F., Kaufman, Y.J., Castle, J.V., Setzer, A., Markham, B., Clark, D., Frouin, R., Halthore, R., Karneli, A., O’Neill, N.T., Pietras, C., et al. (2001) An Emerging Ground-Based Aerosol Climatology: Aerosol Optical Depth from Aeronet. Journal of Geophysical Research: Atmosphere, 106, 12067-12097.
https://doi.org/10.1029/2001JD900014
[23]  Quinn, P.K., Shaw, G., Andrews, E., Dutton, E.G., Ruoho-Airola, T. and Gong, S.L. (2007) Arctic Haze: Current Trends and Knowledge Gaps. Tellus B: Chemical and Physical Meteorology, 59, 99-114.
https://doi.org/10.1111/j.1600-0889.2006.00236.x
[24]  Smirnov, A., Holben, B.N., Sakerin, S.M., Kabanov, D.M., Slutsker, I., Chin, M., Diehl, T.L., Remer, L.A., Kahn, R., Ignatov, A., Liu, L., Mishchenko, M., Eck, T.F., Kucsera, T.L., Giles, D. and Kopelevich, O.V. (2006) Ship-Based Aerosol Optical Depth Measurements in the Atlantic Ocean: Comparison with Satellite Retrievals and Gocart Model. Geophysical Research Letters, 33, Article ID: L14817.
https://doi.org/10.1029/2006GL026051
[25]  US Committee on the Marine Transportation System (2015) A 10-Year Projection of Maritime Activity in the U.S. Arctic Region. US Committee on the Marine Transportation System, Washington DC, 73.
[26]  Mölders, N. (2011) Land-Use and Land-Cover Changes: Impact on Climate and Air Quality. Vol. 44, Springer, Heidelber, 193.
https://doi.org/10.1007/978-94-007-1527-1
[27]  National Aeronautics and Space Administration (2017) MODIS Atmosphere L2 Aerosol Product. MODIS Adaptive Processing System, Goddard Space Flight Center, Washington DC.
[28]  Giles, D.M., Sinyuk, A., Sorokin, M.G., Schafer, J.S., Smirnov, A., Slutsker, I., Eck, T.F., Holben, B.N., Lewis, J.R., Campbell, J.R., Welton, E.J., Korkin, S.V. and Lyapustin, A.I. (2019) Advancements in the Aerosol Robotic Network (AERONET) Version 3 Database—Automated Near-Real-Time Quality Control Algorithm with Improved Cloud Screening for Sun Photometer Aerosol Optical Depth (AOD) Measurements. Atmospheric Measurement Technology, 12, 169-209.
https://doi.org/10.5194/amt-12-169-2019
[29]  Smirnov, A., Holben, B.N., Slutsker, I., Giles, D.M., McClain, C.R., Eck, T.F., Sakerin, S.M., Macke, A., Croot, P., Zibordi, G., Quinn, P.K., Sciare, J., Kinne, S., Harvey, M., Smyth, T.J., Piketh, S., Zielinski, T., Proshutinsky, A., Goes, J.I., Nelson, N.B., Larouche, P., Radionov, V.F., Goloub, P., Krishna Moorthy, K., Matarrese, R., Robertson, E.J. and Jourdin, F. (2009) Maritime Aerosol Network as a Component of Aerosol Robotic Network. Journal of Geophysical Research: Atmosphere, 114, Article ID: D06204.
https://doi.org/10.1029/2008JD011257
[30]  Smirnov, A., Holben, B.N., Eck, T.F., Dubovik, O. and Slutsker, I. (2000) Cloud-Screening and Quality Control Algorithms for the AERONET Database. Remote Sensing of the Environment, 73, 337-349.
https://doi.org/10.1016/S0034-4257(00)00109-7
[31]  Holben, B.N., Eck, T.F., Slutsker, I., Smirnov, A., Sinyuk, A., Schafer, J., Giles, D. and Dubovik, O. (2006) AERONET’s Version 2.0 Quality Assurance Criteria. Proceeding of SPIE, 6408, 14.
https://doi.org/10.1117/12.706524
[32]  Kaskaoutis, D.G., Kalapureddy, M.C.R., Krishna Moorthy, K., Devara, P.C.S., Nastos, P.T., Kosmopoulos, P.G. and Kambezidis, H.D. (2010) Heterogeneity in Pre-Monsoon Aerosol Types over the Arabian Sea Deduced from Ship-Borne Measurements of Spectral AODs. Atmospheric and Chemistry Physcis, 10, 4893-4908.
https://doi.org/10.5194/acp-10-4893-2010
[33]  Kaskaoutis, D.G., Kharol, S.K., Sinha, P.R., Singh, R.P., Badarinath, K.V.S., Mehdi, W. and Sharma, M. (2011) Contrasting Aerosol Trends over South Asia During the Last Decade Based on MODIS Observations. Atmospheric Measurement Techniques Discussions, 4, 5275-5323.
https://doi.org/10.5194/amtd-4-5275-2011
[34]  Kharol, S.K., Badarinath, K.V.S., Kaskaoutis, D.G., Sharma, A.R. and Gharai, B. (2011) Influence of Continental Advection on Aerosol Characteristics over Bay of Bengal (BoB) in Winter: Results from W-ICARB Cruise Experiment. Annales Geophysicae, 29, 1423-1438.
https://doi.org/10.5194/angeo-29-1423-2011
[35]  Sayer, A.M., Munchak, L.A., Hsu, N.C., Levy, R.C., Bettenhausen, C. and Jeong, M.-J. (2014) MODIS Collection 6 Aerosol Products: Comparison between Aqua’s E-Deep Blue, Dark Target, and “Merged” Data Sets, and Usage Recommendations. Journal of Geophysical Research Atmosphere, 119, 13,965-13,989.
https://doi.org/10.1002/2014JD022453
[36]  Sayer, A.M., Hsu, N.C., Bettenhausen, C., Jeong, M.-J. and Meister, G. (2015) Effect of MODIS Terra Radiometric Calibration Improvements on Collection 6 Deep Blue Aerosol Products: Validation and Terra/Aqua Consistency. Journal of Geophysical Research Atmosphere, 120, 12,157-12,174.
https://doi.org/10.1002/2015JD023878
[37]  Remer, L.A., Mattoo, S., Levy, R.C. and Munchak, L.A. (2013) MODIS 3 Km Aerosol Product: Algorithm and Global Perspective. Atmospheric Measurement Technology, 6, 1829-1844.
https://doi.org/10.5194/amt-6-1829-2013
[38]  Sayer, A.M., Hsu, N.C., Bettenhausen, C. and Jeong, M.-J. (2013) Validation and Uncertainty Estimates for MODIS Collection 6 “Deep Blue” Aerosol Data. Journal of Geophysical Research: Atmosphere, 118, 7864-7872.
https://doi.org/10.1002/jgrd.50600
[39]  Li, Q., Li, C.C. and Mao, J.T. (2012) Evaluation of Atmospheric Aerosol Optical Depth Products at Ultraviolet Bands Derived from MODIS Products. Aerosol Science and Technology, 46, 1025-1034.
https://doi.org/10.1080/02786826.2012.687475
[40]  Ångström, A. (1929) On the Atmospheric Transmission of Sun Radiation and on Dust in the Air. Geografiska Annaler, 11, 156-166.
https://doi.org/10.1080/20014422.1929.11880498
[41]  Eck, T.F., Holben, B.N., Dubovik, O., Smirnov, A., Goloub, P., Chen, H.B., Chatenet, B., Gomes, L., Zhang, X.-Y., Tsay, S.-C., Ji, Q., Giles, D. and Slutsker, I. (2005) Columnar Aerosol Optical Properties at Aeronet Sites in Central Eastern Asia and Aerosol Transport to the Tropical Mid-Pacific. Journal of Geophysical Research: Atmosphere, 110, Article ID: D06202.
https://doi.org/10.1029/2004JD005274
[42]  Patel, P.N., Dumka, U.C., Kaskaoutis, D.G., Babu, K.N. and Mathur, A.K. (2017) Optical and Radiative Properties of Aerosols over Desalpar, a Remote Site in Western India: Source Identification, Modification Processes and Aerosol Type Discrimination. Science of the Total Environment, 575, 612-627.
https://doi.org/10.1016/j.scitotenv.2016.09.023
[43]  Taylor, G.I. (1938) The Spectrum of Turbulence, Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 164, 476-490.
https://doi.org/10.1098/rspa.1938.0032
[44]  Ichoku, C., Chu, D.A., Mattoo, S., Kaufman, Y.J., Remer, L.A., Tanré, D., Slutsker, I. and Holben, B.N. (2002) A Spatio-Temporal Approach for Global Validation and Analysis of MODIS Aerosol Products. Geophysical Research Letters, 29, MOD1-1-MOD1-4.
https://doi.org/10.1029/2001GL013206
[45]  Jethva, H., Torres, O. and Yoshida, Y. (2019) Accuracy Assessment of MODIS Land Aerosol Optical Thickness Algorithms Using AERONET Measurements over North America. Atmospheric Measurement Technology, 12, 4291-4307.
https://doi.org/10.5194/amt-12-4291-2019
[46]  de Leeuw, G., Holzer-Popp, T., Bevan, S., Davies, W.H., Descloitres, J., Grainger, R.G., Griesfeller, J., Heckel, A., Kinne, S., Klüser, L., Kolmonen, P., Litvinov, P., Martynenko, D., North, P., Ovigneur, B., Pascal, N., Poulsen, C., Ramon, D., Schulz, M., Siddans, R., Sogacheva, L., Tanré, D., Thomas, G. E., Virtanen, T.H., von Hoyningen Huene, W., Vountas, M. and Pinnock, S. (2015) Evaluation of Seven European Aerosol Optical Depth Retrieval Algorithms for Climate Analysis. Remote Sensing of the Environment, 162, 295-315.
https://doi.org/10.1016/j.rse.2013.04.023
[47]  Kim, J., Waliser, D.E., Mattmann, C.A., Mearns, L.O., Goodale, C.E., Hart, A.F., Crichton, D.J., McGinnis, S., Lee, H., Loikith, P.C. and Boustani, M. (2013) Evaluation of the Surface Climatology over the Conterminous United States in the North American Regional Climate Change Assessment Program Hindcast Experiment Using a Regional Climate Model Evaluation System. Journal of Climate, 26, 5698-5715.
https://doi.org/10.1175/JCLI-D-12-00452.1
[48]  von Storch, H. and Zwiers, F.W. (1999) Statistical Analysis in Climate Research. Cambridge University Press, Cambridge, 484 p.
[49]  Boylan, J.W. and Russell, A.G. (2006) PM and Light Extinction Model Performance Metrics, Goals, and Criteria for Three-Dimensional Air Quality Models. Atmospheric Environment, 40, 4946-4959.
https://doi.org/10.1016/j.atmosenv.2005.09.087
[50]  Tesche, T.W., Morris, R., Tonnesen, G., McNally, D., Boylan, J. and Brewer, P., (2006) CMAQ/CAMX Annual 2002 Performance Evaluation over the Eastern US. Atmospheric Environment, 40, 4906-4919.
https://doi.org/10.1016/j.atmosenv.2005.08.046
[51]  US Environmental Protection Agency (2007) Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze. US Environmental Protection Agency, Washington DC, 262.
[52]  Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S., Hogrefe, C., Irwin, J., Rao, S., Scheffe, R., Schere, K., Steyn, D. and Venkatram, A. (2010) A Framework for Evaluating Regional-Scale Numerical Photochemical Modeling Systems. Environmental Fluid Mechanics, 10, 471-489.
https://doi.org/10.1007/s10652-009-9163-2
[53]  Chernokulsky, A. and Mokhov, I.I. (2012) Climatology of Total Cloudiness in the Arctic: An Intercomparison of Observations and Reanalyses. Advances in Meteorology, 2012, Article ID: 542093.
https://doi.org/10.1155/2012/542093
[54]  Mölders, N., Luijting, H. and Sassen, K. (2008) Use of Atmospheric Radiation Measurement Program Data from Barrow, Alaska, for Evaluation and Development of Snow Albedo Parameterizations. Meteorology and Atmospheric Physics, 99, 199-219.
https://doi.org/10.1007/s00703-007-0271-6
[55]  Smirnov, A., Sayer, A.M., Holben, B.N., Hsu, N.C., Sakerin, S.M., Macke, A., Nelson, N.B., Courcoux, Y., Smyth, T.J., Croot, P., Quinn, P.K., Sciare, J., Gulev, S.K., Piketh, S., Losno, R., Kinne, S. and Radionov, V.F. (2012) Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network. Atmospheric Measurement Technology, 5, 377-388.
https://doi.org/10.5194/amt-5-377-2012
[56]  International Marine Organization (2020) Emission Control Areas (ECAs) Designated under Marpol Annex VI.
https://www.imo.org/en/OurWork/Environment/Pages/Emission-Control-Areas-(ECAs)-designated-under-regulation-13-of-MARPOL-Annex-VI-(NOx-emission-control).aspx
[57]  International Marine Organization (2020) Sulphur 2020—Cutting Sulphur Oxide Emissions.
http://www.imo.org/en/MediaCentre/HotTopics/Pages/Sulphur-2020.aspx
[58]  Gu, Y.W., Wallace, S.W. and Wang, X. (2016) The Impact of Bunker Risk Management on CO2 Emissions in Maritime Transportation under ECA Regulation. Norwegian School of Economics, Bergen, Paper No. 2016/17.
https://doi.org/10.2139/ssrn.2870407
[59]  Huntington, H. (2017) Type of Ice Affects Shipping in Canada’s Northwest Passage—Nuances in Arctic Melting Highlight Need for Effective Vessel Traffic Policy.
https://www.pewtrusts.org/en/research-and-analysis/articles/2017/03/20/type-of-ice-affects-shipping-in-canadas-northwest-passage
[60]  Hanes, C.C., Wang, X., Jain, P., Parisien, M.-A., Little, J.M. and Flannigan, M.D. (2018) Fire-Regime Changes in Canada over the Last Half Century. Canadian Journal of Forest Research, 49, 256-269.
https://doi.org/10.1139/cjfr-2018-0293

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133