全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青海西宁盆地两种披碱草属植物耐盐能力及水土保持能力研究
Soil and Water Conservation and Salt Resistance Capacity of Two Elymus Species in the Xining Basin, Qinghai

DOI: 10.12677/OJSWC.2020.84006, PP. 45-56

Keywords: 盐胁迫,生长指标,生理指标,根系抗拉强度,隶属函数
Salt Stress
, Growth Indexes, Physiological Indexes, Root Tensile Strength, Membership Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

为评价土壤盐渍化区植物水土保持能力和对盐渍土环境的适应能力,本项研究选取两种水土保持植物垂穗披碱草(Elymus nutans Griseb.)和老芒麦(Elymus sibiricus Linn.)为供试植物,通过室内种植的方式对这两种植物进行实验盆种植并对这两种植物开展盐胁迫试验,盐胁迫结束20 d后分别测定植物株高和干重,以及植物叶片脯氨酸含量、丙二醛含量、叶绿素含量和相对电导率以及单根抗拉强度,在此基础上以上述测定值及其增量为评价指标,借助于隶属函数对2种供试植物耐盐能力和水土保持能力进行评价,评价结果表明垂穗披碱草和老芒麦耐盐能力分别为0.54和0.52,且2种植物水土保持能力和耐盐能力综合评价值分别为0.55和0.48,即垂穗披碱草对盐渍土环境的适应能力和水土保持能力大于老芒麦。该研究结果可为土壤盐渍化地区开展水土保持治理、环境恢复和生态保护提供理论价值和思路,同时,亦可为类似地区开展上述工程试验提供实际指导。
To evaluate soil and water conservation and salt resistance capacities of plants in soil salinization regions, two herbs (Elymus nutans Griseb. and Elymus sibiricus Linn.) were selected as the tested species. Based on flower pot plantation, the seeds for the two species were planted in experimental bots and then treated with the salt solution after germination. 20 days after salt solution treatment, the plant height, dry weight, pro concentration, MDA concentration, chlorophyll concentration and relative electronic conductivity in the foliage of and the tensile strength of the two species were determined, based on which comprehensive evaluation method was used to assess the water and soil conservation and salt resistance capacities of the two species. The results show the score (reflecting the water and soil conservation and salt resistance capacities of the two species was calculated using membership function) for E. nutans to resist salt stress is 0.52, and the score for E. sibiricus is 0.52. And the scores for E. nutans to resist salt stress and conserve soil and water is 0.55 and the score for E. sibiricus is 0.48, indicating that E. nutans play a more significant role than E. sibiricus in salt stress tolerance and soil and water conservation. The result can be used as a guidance in regions subject to soil salinization to reduce soil erosion and land acclamation.

References

[1]  杨丽波. 西宁市城市水土保持的进展及今后的工作思路[J]. 青海科技, 2013(1): 19-21.
[2]  胡夏嵩, 李国荣, 朱海丽, 等. 寒旱环境灌木植物根–土相互作用及其护坡力学效应[J]. 岩石力学与工程学报, 2009, 28(3): 613-620.
[3]  卢海静, 余芹芹, 胡夏嵩, 等. 西宁盆地黄土区草本植物群根效应及其护坡贡献[J]. 中国水土保持, 2013(12): 55-59+77.
[4]  余芹芹, 乔娜, 卢海静, 等. 植物根系对土体加筋效应研究[J]. 岩石力学与工程学报, 2012, 31(S1): 3216-3223.
[5]  余芹芹, 胡夏嵩, 李国荣, 等. 寒旱环境灌木植物根–土复合体强度模型试验研究[J]. 岩石力学与工程学报, 2013, 32(5): 1020-1031.
[6]  刘亚斌, 余冬梅, 祁兆鑫, 等. 寒旱环境黄土区灌木植物根系拉拔试验及其根系表面微观结构特征研究[J]. 岩石力学与工程学报, 2018, 37(S1): 3701-3713.
[7]  刘亚斌, 胡夏嵩, 余冬梅, 等. 西宁盆地黄土区2种灌木植物根–土界面微观结构特征及摩擦特性试验[J]. 岩石力学与工程学报, 2018, 37(5): 1270-1280.
[8]  周林虎, 胡夏嵩, 刘昌义, 等. 青藏高原东北部4种灌木主根和侧根抗拉力学特性比较[J]. 水土保持通报, 2019, 39(3): 93-100.
[9]  仲德春. 西宁地区盐渍土的分布特征及地基处理研究[J]. 青海大学学报(自然科学版), 2011, 29(2): 31-33.
[10]  中科院“中国植物志”编辑委员会. 中国植物志[M]. 北京: 科学出版社, 2014.
[11]  王沛, 陈玖红, 王平, 等. 披碱草属植物抗逆性研究现状和存在的问题[J]. 草业学报, 2019, 28(5): 151-162.
[12]  李光莹, 付江涛, 余冬梅, 等. 碱胁迫条件下草本植物根系力学强度试验研究[J]. 工程地质学报, 2016, 24(4): 584-596.
[13]  景宇鹏, 李跃进, 蔺亚莉, 等. 玉米耐Na2CO3胁迫的生理响应及耐盐碱性综合评价[J]. 中国土壤与肥料, 2019(5): 179-186.
[14]  马润勇, 彭建兵, 刘利年, 等. 青藏高原隆升的气候环境效应与黄土高原构造侵蚀[J]. 水土保持通报, 2005, 25(5): 5-11.
[15]  段小玲. 青海省水土流失现状及生态建设思路[J]. 林业调查规划, 2004, 4(29): 55-58.
[16]  徐志闻, 刘亚斌, 胡夏嵩, 等. 基于水分和原位电导率的西宁盆地盐渍土含盐量估算模型[J]. 农业工程学报, 2019, 35(5): 148-154.
[17]  王青海, 沈军辉, 季恒玉. 我国西北地区土地盐渍化与水资源利用[J]. 四川环境, 2000. 19(4): 40-42.
[18]  罗友弟. 青海地区盐渍土分布规律及其盐胀溶陷机制探讨[J]. 水文地质工程地质, 2010, 34(4): 116-120.
[19]  姜有生. 青海东部地区盐渍土的分布特征及工程应对措施[J]. 青海师范大学学报(自然科学版), 2006(3): 98-101.
[20]  陈钊, 梁新平, 侯扶江, 等. 不同放牧强度下垂穗披碱草遗传多样性分析[J]. 草业学报, 2015, 24(8): 159-165.
[21]  中国科学院上海植物生理研究所, 上海市植物生理学会编. 现代植物生理学试验指南[M]. 北京: 科学出版社, 1999: 303.
[22]  郝再彬, 苍晶, 徐仲. 植物生理试验技术[M]. 哈尔滨: 哈尔滨出版社, 2002: 185-192.
[23]  刘宁, 高玉葆, 贾彩霞, 等. 渗透胁迫下多花黑麦草叶内过氧化物酶活性和脯氨酸含量以及质膜相对透性的变化[J]. 植物生理学通讯, 2000, 36(1): 11-14.
[24]  张宪政, 谭贵茹, 黄元极. 植物生理学试验技术[M]. 沈阳: 辽宁科学技术出版社, 1983: 75-77.
[25]  刘亚斌, 李淑霞, 余冬梅, 胡夏嵩, 杨幼清. 西宁盆地黄土区典型草本植物单根抗拉力学特性试验[J]. 农业工程学报, 2018, 34(15): 157-166.
[26]  Fariduddin, Q., Ahmad Mir, B. and Ahmad, A. (2012) Physiological and Biochemical Traits as Tools to Screen Sensitive and Resistant Varieties of Tomatoes Exposed to Salt Stress. Journal of Plant Physiology, 24, 281-292. https://doi.org/10.1590/S1677-04202012000400007
[27]  卢素锦, 周青平, 刘文辉, 等. 披碱草属6种牧草苗期抗寒性鉴定[J]. 湖北农业科学, 2013, 52(8): 1889-1892.
[28]  张俊叶, 张力君, 赵青山, 等. 7种禾本科牧草种子苗期耐盐性的隶属函数法评价[J]. 内蒙古农业科技, 2012(3): 42.
[29]  He, F.L., Bao, A.K., Wang, S.M., et al. (2019) NaCl Stimulates Growth and Alleviates Drought Stress in the Salt-Secreting Xerophyte Reaumuria soongorica. Environmental and Experimental Botany, 162, 433-443. https://doi.org/10.1016/j.envexpbot.2019.03.014
[30]  杨月娟, 周华坤, 王文颖, 等. 盐胁迫对垂穗披碱草幼苗生理指标的影响[J]. 兰州大学学报(自然科学版), 2014, 50(1): 101-106.
[31]  赵可夫, 范海. 盐胁迫下真盐生植物与泌盐植物的渗透调节物质及其贡献的比较研究[J]. 应用与环境生物学报, 2000, 6(2): 99 -105.
[32]  陈爱葵, 韩瑞宏, 李东洋, 等. 植物叶片相对电导率测定方法比较研究[J]. 广东教育学院学报, 2010, 30(5): 88-91.
[33]  Li, J.S., Hussain, T., Feng, X.H., et al. (2019) Comparative Study on the Resistance of Suaeda glauca and Suaeda salsa to Drought, Salt, and Alkali Stresses. Ecological Engineering, 140, Article ID: 105593. https://doi.org/10.1016/j.ecoleng.2019.105593
[34]  Hu, T., Jin, Y., Li, H., et al. (2016) Stress Memory Induced Transcriptional and Metabolic Changes of Perennial Ryegrass (Lolium perenne) in Response to Salt Stress. Physiologia Plantarum, 156, 54-69. https://doi.org/10.1111/ppl.12342
[35]  倪建伟, 武香, 张华新, 等. 3种白刺耐盐性的对比分析[J]. 林业科学研究, 2012, 25(1): 48-53.
[36]  Yamamoto, A., Sawada, H., Shim, I.S., et al. (2011) Effect of Salt Stress on Physiological Response and Leaf Polyamine Content in NERICA Rice Seedlings. Plant Soil and Environment, 57, 571-576. https://doi.org/10.17221/413/2011-PSE
[37]  Wang, Y., Stevanato, P., Yu, L., et al. (2017) The Physiological and Metabolic Changes in Sugar Beet Seedlings under Different Levels of Salt Stress. Journal of Plant Research, 130, 1079-1093. https://doi.org/10.1007/s10265-017-0964-y
[38]  全先庆, 张渝洁, 单雷, 等. 脯氨酸在植物生长和非生物胁迫耐受中的作用[J]. 生物技术通讯, 2007, 18(1): 159-162.
[39]  Jia, G.X., Zhu, Z.Q., Chang, F.Q., et al. (2002) Transformation of Tomato with the BADH, Gene from Atriplex, Improves Salt Tolerance. Plant Cell Reports, 21, 141-146. https://doi.org/10.1007/s00299-002-0489-1
[40]  张景云, 白雅梅, 缪南生, 等. 盐胁迫对不同耐盐性二倍体马铃薯叶片质膜透性、丙二醛和脯氨酸含量的影响[J]. 作物杂志, 2013(4): 75-80.
[41]  徐静, 董宽虎, 高文俊, 等. NaCl和Na2SO4胁迫下冰草幼苗的生长及生理相应[J]. 中国草地学报, 2011, 33(11): 36-41.
[42]  刘奕琳, 万福绪, 娄晓瑞. 盐胁迫对10个墨西哥柏树种源幼苗生理生化的影响[J]. 南京林业大学学报(自然科学版), 2013, 37(4): 29-33.
[43]  Strongonov, B.P. (1973) Structure and Function of Plant Cells in Saline Habitats. Halsted Press, New York.
[44]  Woodward, A.J. and Bennett, I.J. (2005) The Effect of Salt Stress and Abscisic Acid on Proline Production, Chlorophyll Content and Growth of in Vitro Propagated Shoots of Eucalyptus camaldulensis. Plant Cell Tissue and Organ Culture, 82, 189-200. https://doi.org/10.1007/s11240-005-0515-4
[45]  凌云鹤, 周瑶, 景兵, 等. 盐胁迫对向日葵幼苗生长及生理特性的影响[J]. 干旱地区农业研究, 2019, 37(4): 139-145.
[46]  李景欣, 杨帆, 赵娜, 等. 4种披碱草属牧草苗期耐盐性评价[J]. 黑龙江畜牧兽医, 2013, 5(3): 77-79.
[47]  辛慧慧, 王慧君, 蔡云. 盐胁迫对披碱草属3种牧草幼苗生理指标的影响[J]. 新疆畜牧业, 2017(6): 29-31.
[48]  Kokutse, N.K., Temgoua, A.G.T. and Kavazovic, Z. (2016) Slope Stability and Vegetation: Conceptual and Numerical Investigation of Mechanical Effects. Ecological Engineering, 86, 146-153. https://doi.org/10.1016/j.ecoleng.2015.11.005
[49]  Reubens, B., Poesen, J., Danjon, F., et al. (2007) The Role of Fine and Coarse Roots in Shallow Slope Stability and Soil Erosion Control with a Focus on Root System Architecture: A Review. Trees, 21, 385-402. https://doi.org/10.1007/s00468-007-0132-4
[50]  李淑霞, 刘亚斌, 余冬梅, 等. 寒旱环境盐胁迫条件下两种草本植物的根系力学特性研究[J]. 盐湖研究, 2019, 27(1): 116-131.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413