全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biochemical Characterization of Lipase Produced by Bacillus spp. Isolated from Soil and Oil Effluent

DOI: 10.4236/aer.2020.84004, PP. 39-48

Keywords: Bacillus, Lipase, Biochemical Characterization, Oil Effluent

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of the present work was to isolate Bacillus spp. With high lipase activity; to characterize the isolates using both biochemical and molecular methods; to produce lipase using Bacillus isolates and to study the biochemical and biophysical characteristics of the produced lipase. Sixty five Bacillus isolates were isolated from soil 20 isolates from guar field soil (G), 15 isolates from Abusabein field soil (B), 15 isolates from sun flower field soil (S) and 15 isolates from oil effluent (O). Lipase producing isolates were screened; a Chromogenic plate’s method was used. Enzyme activity was quantitatively assayed. Lipase production under submerged fermentation (SMF) conditions using a production medium that contained metal salts, Tween-20 and olive oil as substrate at different period 24, 48, 72 and 96 h, the optimum pH, temperature for lipase activity was determinated and kinetics as well. The isolates showed the highest lipase activity which was identified as Bacillus sp. The optimum pH, temperature, thermostability and kinetic of the produced enzymes were found in three isolates G14, O1 and B10 with the highest enzyme activity and best stability. The isolates G14, O1 and B10 revealed the highest lipase activity of 63.4, 41.2 and 28.3 U/ml, respectively. The results showed optimum pH of the lipase activity from isolates G14, O1 and B10 8.0, 6.0 and 6.0 and the optimum temperature 40, 60 and 75˚C, respectively. Lipase enzymes from isolates O1 and B10 were found to be more thermostable after incubation time for 120 min at 90˚C. The Vmax and Km values of lipase for isolates G14, OI and B10 were 17.6, 135 and 24.4 μmolemin1 and 1.3, 1.6 and 0.681 mM, respectively. According to these results Bacillus spp. with high lipase

References

[1]  Aravindan, N.R., Anbumathi, P. and Viruthagiri, T. (2007) Lipase Applications in Food Industry. Indian Journal of Biotechnology, 6, 141-158.
[2]  Jaeger, K.E., Dijkstra, B.W. and Reetz, M.T. (1998) Bacterial Biocatalysts: Molecular Biology Three Dimensional Structures and Biotechnological Applications of Lipases. Annual Review of Microbiology, 53, 315-351.
https://doi.org/10.1146/annurev.micro.53.1.315
[3]  Gupta, R., Gupta, N. and Rathi, P. (2004) Bacterial Lipases: An Overview of Production, Purification and Biochemical Properties. Applied Microbiology and Biotechnology, 64, 763-781. https://doi.org/10.1007/s00253-004-1568-8
[4]  Sharma, R., Chisti, Y. and Banerjee, U.C. (2001) Production, Purification, Characterization, and Applications of Lipases. Biotechnology Advances, 19, 627–662.
https://doi.org/10.1016/S0734-9750(01)00086-6
[5]  Gayathri, V.R., Perumal, P., Mathew, L.P. and Prakash, B. (2013) Screening and Molecular Characterization of Extracellular Lipase Producing Bacillus Species from Coconut Oil Mill Soil. International Journal of Science and Technology, 2, 502-509.
[6]  Tambekar, D.H., Kalikar, M.V., Shinde, R.S., Vanjari, L.B. and Pawar, R.G. (2009) Isolation and Characterization of Multiple Enzyme Producer Bacillus Species from Saline Belt of Purna River. Journal of Applied Sciences Research, 5, 1064-1066.
[7]  Kumar, R., Sharma, A., Kumar, A. and Singh, D. (2012) Lipase from Bacillus pumilus RK31: Production, Purification and Some Properties. World Applied Sciences Journal, 16, 940-948.
[8]  Kumar, M.D.J., Rejitha, R., Devika, S., Balakumaran, M.D.A., Immaculate, A., Rebecca, N. and Kalaichelvan, P.T. (2012) Production, Optimization and Purification of Lipase from Bacillus sp. MPTK 912 Isolated from Oil Mill Effluent. Advances in Applied Science Research, 3, 930-938.
[9]  Lindquist, J. (2006) Bacillus Isolation. Bacteriology 102 Website-Fall.
[10]  Claus, D. and Berkeley, R.C.W. (1986) Genus Bacillus Cohn, 1872. In: Sheath, P.H.A., Mair, N.S., Sharpe, M.E. and Holt, J.G., Eds., Bergey’s Manual of Systematic Bacteriology, Vol. 2, The Williams and Wilkins Co., Baltimore, 1105-1139.
[11]  Harrigan, W.F. (1998) Part IV: Schemes for the Identification of Microorganisms. Academic Press, London, Laboratory Methods in Food Microbiology, 3rd Edition, 469.
[12]  Muruke, M.H.S., Kivaisi, A.K., Magingo, F.S.S. and Danell, E. (2002) Identification of Mushroom Mycelia Using DNA Techniques. Tanzania Journal of Science, 28, 115-128. https://doi.org/10.4314/tjs.v28i1.18323
[13]  Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. (1990) DNA Polymorphisms Amplified by Arbitrary Primers are Useful as Genetic Markers. Nucleic Acids Research, 18, 6531-6535.
https://doi.org/10.1093/nar/18.22.6531
[14]  Beisson, F., Tiss, A., Riviere, C. and Verger, R. (2000) Methods for Lipase Detection and Assay: A Critical Review. European Journal of Lipid Science and Technology, 102, 133-153.
https://doi.org/10.1002/(SICI)1438-9312(200002)102:2<133::AID-EJLT133>3.0.CO;2-X
[15]  Poddar, S. and Singha, P. (2015) Isolation and Characterization of an Extracellular Lipase Producing Bacillus Corynebacterium sp. from Petroleum Contaminated Soils. Helix, 3, 699-703.
[16]  Iftikhar, T., Naiz, M., Afzal, M., ul Haq, I. and Rajoka, M.I. (2008) Maximization of Intracellular Lipase Production in a Lipase-Overproducing Mutant Derivative of Rhizopus oligosporus DGM 31: A Kinetic Study. Food Technology and Biotechnology, 46, 402-412.
[17]  Sharma, P., Sharma, N., Pathania, S. and Handa, S. (2017) Purification and Characterization of Lipase by Bacillus methylotrophicus PS3 under Submerged Fermentation and Its Application in Detergent Industry. Journal of Genetic Engineering and Biotechnology, 15, 369-377. https://doi.org/10.1016/j.jgeb.2017.06.007
[18]  Ghori, M.I., Iqbal, M.J. and Hameed, A. (2011) Characterization of a Novel Lipase from Bacillus sp. Isolated from Tannery Wastes. Brazilian Journal of Microbiology, 42, 22-29. https://doi.org/10.1590/S1517-83822011000100003
[19]  Singh, R., Gupta, N., Goswami, V.K. and Gupta, R. (2006) A Simple Activity Staining Protocol for Lipases and Esterases. Applied Microbiology and Biotechnology, 70, 679-682. https://doi.org/10.1007/s00253-005-0138-z
[20]  Lee, L.P., Karbul, H.M., Citartan, M., Gopinath, S.C.B., Lakshmipriya, T. and Tang, T.H. (2015) Lipase-Secreting Bacillus Species in an Oil-Contaminated Habitat: Promising Strains to Alleviate Oil Pollution. BioMed Research International, 2015, Article ID: 820575. https://doi.org/10.1155/2015/820575
[21]  Rai, B., Shrestha, A., Sharm, S. and Joshi, J. (2014) Screening, Optimization and Process Scale Up for Pilot Scale Production of Lipase by Aspergillus niger. Biomedicine and Biotechnology, 2, 54-55.
[22]  Saraswat, R., Verma, V., Sistla, S. and Bhushan, I. (2017) Evaluation of Alkali and Thermotolerant Lipase from an Indigenous Isolated Bacillus Strain for Detergent Formulation. Electronic Journal of Biotechnology, 30, 33-38.
https://doi.org/10.1016/j.ejbt.2017.08.007
[23]  Edupuganti, S., Parcha, L. and Mangamoori, N.L. (2017) Purification and Characterization of Extracellular Lipase from Staphylococcus epidermidis (MTCC 10656). Journal of Applied Pharmaceutical Science, 7, 057-063.
https://doi.org/10.7324/JAPS.2017.70108
[24]  Alkan, H., Baysal, Z., Uyar, F. and Dogru, M. (2007) Production of Lipase by a Newly Isolated Bacillus coagulans under Solid-State Fermentation Using Melon Waste. Applied Biochemistry and Biotechnology, 136, 183-192.
https://doi.org/10.1007/BF02686016
[25]  Bora, L. and Bora, M. (2012) Optimization of Extracellular Thermophilic Highly Alkaline Lipase from Thermophilic Bacillus sp. Isolated from Hot Spring of Arunachal Pradesh, India. Brazilian Journal of Microbiology, 43, 30-42.
https://doi.org/10.1590/S1517-83822012000100004
[26]  Cho, A.R., Yoo, S.K. and Kim, E.J. (2000) Cloning, Sequencing and Expression in Escherichia coli of a Thermophilic Lipase from Bacillus thermoleovorans ID-1. FEMS Microbiology Letter, 186, 235-238.
https://doi.org/10.1111/j.1574-6968.2000.tb09110.x
[27]  Imamuri, S. and Kitaura, Sh. (2000) Purification and Characterization of a Monoacylglycerol Lipase from the Moderately Thermophilic Bacillus sp. H-257. Journal of Biochemistry, 127, 419-425.
https://doi.org/10.1093/oxfordjournals.jbchem.a022623
[28]  Massadeh, M., Sabra, F., Dajani, R. and Arafat, A. (2012) Purification of Lipase Enzyme Produced by Bacillus stearothermophilus HU1. International Conference on Eco-Systems and Biological Sciences, Penang, Malaysia, 19-20 May 2012, 34-37.
[29]  Barbosa, J.M.P., Souza, R.L., de Melo, C.M., Frisks, A.T., Lima, A.S. and Soares, C.M.F. (2012) Biochemical Characterization of Lipase from A New Strain of Bacillus sp. ITP-001. Quimica Nova, 35, 1173-1178.
https://doi.org/10.1590/S0100-40422012000600020

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133