In this article, we investigate the physical consequences that would result if electromagnetic field quanta were emitted at random speeds by a source and if the receiver could only perceive the fraction of the quantum field that is slower than the speed of light in its individual rest frame. The analysis shows that this plausible hypothesis eliminates the weak points of conventional emission theories and that both postulates of special relativity are fulfilled. Furthermore, the results demonstrate that this theory can explain numerous experiments that are usually interpreted using different aspects of special relativity. However, the resulting quantum field theory is not equivalent to the special theory of relativity and requires neither spacetime nor Lorentz transformation. Furthermore, this approach offers a starting point for interpreting quantum effects and effects that contradict the special theory of relativity.
References
[1]
Ritz, W. (1908) Recherches critiques sur l’Électrodynamique générale. Annales de Chimie et de Physique, 13, 145.
[2]
Fox, J.G. (1965) Evidence against Emission Theories. American Journal of Physics, 33, 1-17. https://doi.org/10.1119/1.1971219
[3]
Michelson, A.A. and Morley, E.W. (1887) On the Relative Motion of the Earth and the Luminiferous Ether. American Journal of Science, 34, 333-341.
https://doi.org/10.2475/ajs.s3-34.203.333
[4]
Kennedy, R.J. and Thorndike, E.M. (1932) Experimental Establishment of the Relativity of Time. Physical Review, 42, 400-418.
https://doi.org/10.1103/PhysRev.42.400
[5]
Hammar, G.W. (1935) The Velocity of Light within a Massive Enclosure. Physical Review, 48, 462-463. https://doi.org/10.1103/PhysRev.48.462.2
[6]
Trouton, F.T. and Noble, H.R. (1903) The Forces Acting on a Charged Condenser Moving through Space. Proceedings Royal Society London, 74, 132-133.
[7]
Trouton, F.T. and Rankine, A. (1908) On the Electrical Resistance of Moving Matter. Proceedings of the Royal Society of London, 80, 420-435.
[8]
de Sitter, W. (1913) Ein astronomischer Beweis für die Konstanz der Lichtgeschwindigkeit. Physikalische Zeitschrift, 14, 429.
[9]
Alväger, T., Nilsson, A. and Kjellman, J. (1963) A Direct Terrestrial Test of the Second Postulate of Special Relativity. Nature, 197, 1191.
https://doi.org/10.1038/1971191a0
[10]
Brecher, K. (1977) Is the Speed of Light Independent of the Velocity of the Source? Physical Review Letters, 39, 1051-1054.
https://doi.org/10.1103/PhysRevLett.39.1051
[11]
Hasselkamp, D., Mondry, E. and Scharmann, A. (1979) Direct Observation of the Transversal Doppler-Shift. Zeitschrift für Physik A Atoms and Nuclei, 289, 151-155.
https://doi.org/10.1007/BF01435932
[12]
Klinaku, S. (2016) The Doppler Effect and the Three Most Famous Experiments for Special Relativity. Results in Physics, 6, 235-237.
https://doi.org/10.1016/j.rinp.2016.04.011
[13]
Tatum, J. (2020) Celestial Mechanics. 1em plus 0.5em minus 0.4em LibreTexts.
[14]
Sagnac, G. (1913) Léther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme. Comptes Rendus Physique, 95, 708-710.
[15]
Kündig, W. (1963) Measurement of the Transverse Doppler Effect in an Accelerated System. Physical Review, 129, 2371. https://doi.org/10.1103/PhysRev.129.2371
[16]
Barnett, S.M. and Loudon, R. (2010) The Enigma of Optical Momentum in a Medium. Philosophical Transactions of the Royal Society A, 368, 927.
https://doi.org/10.1098/rsta.2009.0207
[17]
Ives, H.E. and Stilwell, G. (1938) An Experimental Study of the Rate of a Moving Atomic Clock. Journal of the Optical Society of America, 28, 215-226.
https://doi.org/10.1364/JOSA.28.000215
[18]
Kühn, S. (2020) General Analytic Solution of the Telegrapher’s Equations and the Resulting Consequences for Electrically Short Transmission Lines. Journal of Electromagnetic Analysis and Applications, 12, 71-87.
[19]
Nimtz, G. (2011) Tunneling Confronts Special Relativity. Foundations of Physics, 41, 1193-1199. https://doi.org/10.1007/s10701-011-9539-2
[20]
Bohm, D. (1965) The Special Theory of Relativity. W.A. Benjamin, New York.
[21]
Tolman, R.C. (1917) The Theory of the Relativity of Motion. University of California Press, Berkeley.