全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多孔碳渗流不同介质的模拟研究
Simulation Study of Porous Carbon Infiltration in Different Media

DOI: 10.12677/APF.2020.103003, PP. 17-25

Keywords: 多孔碳,三维重构,渗流模拟
Porous Carbon
, Three-Dimensional Reconstruction, Seepage Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

多孔碳性能优越而被广泛使用,但其孔隙结构会使大量气孔存在而导致体积密度下降,强度降低等性能缺陷,这些缺陷大大的影响多孔碳的性能和应用。本文通过研究多孔碳渗流不同介质来提高其性能,以多孔碳为材料,利用CT扫描和三维重构技术建立多孔碳物理模型,再用CFD对多孔碳渗流H2O和CO2分别进行模拟,分析结果得出气体比液体渗流速度快并且所需要的启动压力和稳定压力也不同。渗流介质对多孔碳性能的提高有重要的影响。
Porous carbon has excellent properties and is widely used, but its pore structure will cause a large number of pores to exist, resulting in a decrease in bulk density and strength. These defects greatly affect the performance and application of porous carbon. This paper uses porous carbon as the ma-terial to improve its performance by studying different media of porous carbon infiltration, using CT scanning and three-dimensional reconstruction technology to establish a physical model of porous carbon, and then using CFD to simulate the porous carbon infiltration H2O and CO2 respectively. The analysis results showed that the outgoing gas has a faster percolation rate than the liquid, and the required pressure for starting and the stable stage are different. The seepage medium has an im-portant influence on the improvement of the performance of porous carbon.

References

[1]  高文元, 孙俊才, 马铁成. 多孔无机材料的性质及用途[J]. 中国陶瓷工业, 2003(3): 49-52+48.
[2]  郑经堂, 张引枝, 王茂章. 多孔炭材料的研究与开发[J]. 炭素技术, 1995(3): 13-18.
[3]  聂玉静. 高性能炭材料生产用浸渍剂沥青的研究[D]: [硕士学位论文]. 武汉: 武汉科技大学, 2003.
[4]  Sahimi, M. (1998) Non-Linear and Non-Local Transport Processes in Heterogeneous Media: From Long-Range Correlated Percolation to Fracture and Materials Breakdown. Physics Reports, 306, 213-395.
https://doi.org/10.1016/S0370-1573(98)00024-6
[5]  Stanleyh, E., Andradeijr, J.S. and Havlins, S. (1999) Perco-lation Phenomena: A Broad-Brush Introduction with Some Recent Applications to Porous Media, Liquid Water, and City Growth. Physical A, 266, 5-16.
https://doi.org/10.1016/S0378-4371(99)00029-1
[6]  Pascal, J.P. and Pascal, H. (1997) Non-Linear Effects on Some Unsteady Non-Darcian Flows through Porous Media. International Journal of Non Linear Mechanics, 32, 361-376.
https://doi.org/10.1016/S0020-7462(96)00062-5
[7]  岳文正, 陶果, 朱克勤. 二维格子气自动机模拟孔隙介质的电传输特性[J]. 地球物理学报, 2005, 48(1): 189-195.
[8]  宋怀玲. 几类地下渗流力学模型的数值模拟和分析[D]: [博士学位论文]. 济南: 山东大学, 2005.
[9]  王克文, 关继腾, 范业活, 等. 孔隙网络模型在渗流力学研究中的应用[J]. 力学进展, 2005, 35(3): 51-58.
[10]  李涛, 李敏, 景雪琪, 等. 孔隙尺度各向异性和孔隙分布非均质性对多孔介质渗透率的影响机理[J]. 石油勘探开发, 2019, 46(3): 1-11.
[11]  雷树业, 王利群, 贾兰庆, 等. 颗粒床孔隙率与渗透率的关系[J]. 清华大学学报, 1998, 38(5): 20-28.
[12]  Adler, P.M. and Thovert, J.F. (1995) Real Porous Media: Local Geometry and Macroscopic Properties. Applied Mechanics Reviews, 51, 537-585.
https://doi.org/10.1115/1.3099022
[13]  Videla, A.R., Lin, C.L. and Miller, J.D. (2007) 3D Characterization of In-dividual Multiphase Particles in Packed Particle Beds by X-Ray Microtomography (XMT). International Journal of Mineral Processing, 84, 321-326.
https://doi.org/10.1016/j.minpro.2006.07.009
[14]  Ohnishi, K., Suzuki, Y. and Watanabe, Y. (2014) Quantitative 3D Characterization of the Pore Space of Real Rocks: Improved μ-CT Resolution and Pore Extraction Methodology. Animal, 8, 1339-1348.
[15]  Knackstedt, M.A., Arns, C.H., Limaye, A., et al. (2004) Digital Core Laboratory: Proper-ties of reservoir Core Derived from 3D Images. SPE Asia Pacific Conference on Integrated Modelling for Asset Man-agement, 29-30 March, Kuala Lumpur, 66-68.
https://doi.org/10.2118/87009-MS
[16]  Garcia, D., Lin, C.L. and Miller, J.D. (2009) Quantitative Analysis of Grain Boundary Fracture in the Breakage of Single Multiphase Particles Using X-Ray Micro-Tomography Procedures. Minerals Engineering, 22, 236-243.
https://doi.org/10.1016/j.mineng.2008.07.005
[17]  Lin, C.L., Miller, J.D. and Garcia, C. (2005) Saturated Flow Characteristics in Column Leaching as Described by LB Simulation. Minerals Engineering, 18, 1045-1051.
https://doi.org/10.1016/j.mineng.2005.02.006
[18]  Miller, J.D., Lin, C.L., Garcia, C., et al. (2003) Ultimate Recov-ery in Heap Leaching Operations as Established from Mineral Exposure Analysis by X-Ray Microtomography. Interna-tional Journal of Mineral Processing, 72, 331-340.
https://doi.org/10.1016/S0301-7516(03)00091-7
[19]  Xu, W., Dhawan, N., Lin, C.L., et al. (2013) Further Study of Grain Boundary Fracture in the Breakage of Single Multiphase Particles Using X-Ray Microtomography Procedures. Minerals Engineering, 46-47, 89-94.
https://doi.org/10.1016/j.mineng.2013.03.016
[20]  杨保华. 堆浸体系中散体孔隙演化机理与渗流规律研究[D]: [博士学位论文]. 长沙: 中南大学, 2010.
[21]  Hambli, R. (2013) Micro-CT Finite Element Model and Experimental Validation of Trabecular Bone Damage and Fracture. Bone, 56, 363-374.
[22]  Crocker, A., Smith, G., Flewitt, P., et al. (2013) Grain Boundary Fracture in the Cleavage Regime of Polycrystalline Metals. American Journal of Botany, 49, 110-115.
[23]  黄明清. 硫化铜矿生物堆浸气体渗流规律及通风强化浸出机制[D] : [博士学位论文]. 北京: 北京科技大学, 2015.
[24]  吴华山, 陈效民, 陈粟. 利CT扫描技术对太湖地区主要水稻土中大孔隙的研究[J]. 水土保持学报, 2007, 21(2): 175-178.
[25]  赵冬, 许明祥, 刘国彬, 等. 用显微CT研究不同植被恢复模式的土壤团聚体微结构特征[J]. 农业工程学报, 2016, 32(9): 123-129.
[26]  郭晓明, 马腾, 陈柳竹, 等. 污水灌溉下土壤孔隙特征的CT定量分析[J]. 地球科学-中国地质大学学报, 2015(11): 1896-1903.
[27]  王宇, 李晓, 阀介民, 等. 基CT图像灰度水平的孔隙率计算及应用[J]. 水利学报, 2015, 46(3): 357-365.
[28]  巩剑南. 煤基多孔介质三维重构与渗流模拟研究[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2020.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413