全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

天线阵面结构变形重构方法
Reconstruction Method of Antenna Array Deformation

DOI: 10.12677/HJWC.2020.106015, PP. 109-115

Keywords: 相控阵雷达,变形重构,光纤光栅传感器,模态法
Phased Array Radar
, Deformation Reconstruction, Fiber Grating Sensor, Modal Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

天线阵面变形是影响雷达电性能关键因素,准确地感知天线阵面形状是实现电性能有效补偿的基础。本文介绍了光纤光栅应变传感器测量方法,建立了影响测量准确度的粘接材料应变传递效率模型。基于模态法形变重构方程,提出一种两步序列传感器布局方法。通过引入有限的实验模态信息和局部对应原理,得到更加贴近实际的模态信息,提出了基于模态法的天线阵面变形重构方法,并设计了天线阵面变形重构实验系统。本文为复杂载荷环境下雷达电性能主动补偿提供了技术支撑。
Antenna array deformation is a key factor affecting the radar electrical performance, and accurately sensing the antenna array shape is the basis for effective compensation of electrical performance. In this paper, the measurement method of fiber Bragg grating sensor is introduced, and the strain transfer efficiency model of adhesive material which affects the measurement accuracy is established. Based on the deformation reconstruction equation of modal method, a two-step sequential sensor placement method is proposed. By introducing the limited experimental modal information and the local correspondence principle, the more practical modal information is obtained. The antenna array deformation reconstruction method based on the modal transmission is proposed, and the antenna array deformation reconstruction experimental system is designed. This paper provides technical support for active compensation of radar electrical performance under complex load environment.

References

[1]  邵春生. 相控阵雷达研究现状与发展趋势[J]. 现代雷达, 2016, 38(6): 1-12.
[2]  赵希芳, 沈文军, 马利华. 大型天线阵面平面度分析与控制[J]. 电子机械工程, 2014, 30(2): 37-39.
[3]  宋敏, 胡劲松, 吴文志, 张荣明. 机载高精度相控阵雷达天线阵面结构设计[J]. 电子机械工程, 2016, 32(3): 26-30.
[4]  王从思, 段宝岩, 仇原鹰. 天线表面误差的精确计算方法及电性能分析[J]. 电波科学学报, 2006, 21(3): 403-409.
[5]  王馨. 机械结构分布式光纤应变与变形监测可视化技术研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2016.
[6]  Kang, L.-H., Kim, D.-K. and Han. J.-H. (2007) Estimation of Dynamic Structural Displacements Using Fiber Bragg Grating Strain Sensors. Journal of Sound and Vibration, 305, 534-542.
https://doi.org/10.1016/j.jsv.2007.04.037
[7]  Kang, L.H., Kim, D.K., Han, J.H. (2007) Estimation of Dynamic Structural Displacements Using Fiber Bragg Grating Strain Sensors. Journal of Sound and Vibration, 305, 534-542.
https://doi.org/10.1016/j.jsv.2007.04.037
[8]  Cerracchio, P., Gherlone, M. and Tessler, A. (2015) Real-Time Displacement Monitoring of a Composite Stiffened Panel Subjected to Mechanical and Thermal Loads. Meccanica, 50, 2487-2496.
https://doi.org/10.1007/s11012-015-0146-8
[9]  Bruno, R., Toomarian, N. and Salama, M. (1999) Shape Estimation from Incomplete Measurements: A Neural-Net Approach. Smart Materials and Structures, 3, 92-98.
https://doi.org/10.1088/0964-1726/3/2/002

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413