全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三体组合振荡水翼流体动力特性研究
Hydrodynamic Characteristics of Three-Body Combined Oscillating Hydrofoil

DOI: 10.12677/IJFD.2020.84009, PP. 80-92

Keywords: 三体水翼,振荡水翼,水动力特性
Three-Body Hydrofoil
, Oscillating Hydrofoil, Hydrodynamic Characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

振荡水翼在波浪能、潮流能利用和仿生推进等领域应用广泛,本文对多个水翼振荡摆动过程中的水动力性能进行仿真计算分析。首先建立了三个水翼组合成的三体模型作为分析对象,随后采用时均雷诺模型结合多面体网格技术实现了三体水翼振荡过程的数值模拟方法。在此基础上,对水翼在±20?的摆动角度范围和1~10 m/s来流流速范围内的水动力特性进行了仿真分析。结果表明,在不同摆动角度工况下,高流速区域主要分布在尾部的两个翼型附近区域。随着摆动角度的增大,最大压力变化较小,最低压力逐渐增大。随着来流速度的增大,最大压力和最小压力均均有不同程度的增大。通过对不同工况的升力和阻力曲线分析,随着摆动角度的增大,尾部两个翼型的升力变化较小,升力方向相反,首部翼型随着摆动角度的增大,其升力逐渐增大;随着来流速度的增大,所有翼型的升力和阻力增大,且升力增加逐渐加快。
Oscillating hydrofoils are widely used in the fields of wave energy, tidal energy utilization, and bi-onic propulsion. This paper analyzes the hydrodynamic performance of multiple hydrofoils during oscillation and swing. First, a three-body model composed of three hydrofoils was established as the analysis object, and then the time-averaged Reynolds model combined with polyhedral grid tech-nology was used to realize the numerical simulation method of the three-body hydrofoil oscillation process. On this basis, the hydrodynamic characteristics of the hydrofoil in the swing angle range of ±20? and the flow velocity range of 1~10 m/s are simulated and analyzed. The results show that under different swing angles, the high velocity area is mainly distributed in the vicinity of the two airfoils at the tail. As the swing angle increases, the maximum pressure changes less and the mini-mum pressure gradually increases. As the incoming flow rate increases, the maximum pressure and minimum pressure both increase. Through the analysis of the lift and drag force curves of different working conditions, with the increase of the swing angle, the lift force of the two tail hydrofoils changes little, and the lift direction is opposite. As the swing angle increases, the lift force gradually increases. As the incoming flow velocity increases, the lift and drag of all hydrofoils increase, and the increase in lift gradually accelerates.

References

[1]  Lighthill, M. (1970) Aquatic Animal Propulsion of High Hydromechanical Efficiency. Journal of Fluid Mechanics, 44, 265-301.
https://doi.org/10.1017/S0022112070001830
[2]  Wu, T.Y. (1972) Extraction of Flow Energy by a Wing Oscillating in Waves. Journal of Ship Research, 14, 66-78.
[3]  Bose, N. and Lien, J. (1989) Propulsion of a Fin Whale: Why the Fin Whale Is a Fast Swimmer. Proceedings of the Royal Society of London B Biological Sciences, London, 175-200.
[4]  Read, D.A., Hover, F.S. and Triantafyllou, M.S. (2003) Forces on Oscillating Foils for Propulsion and Maneuvering. Journal of Fluids and Structures, 17, 163-183.
https://doi.org/10.1016/S0889-9746(02)00115-9
[5]  Peng, Z. and Zhu, Q. (2009) Energy Harvesting through Flow-Induced Oscillations of a Foil. Physics of Fluids, 21, Article ID: 123602.
https://doi.org/10.1063/1.3275852
[6]  封培元, 马宁, 顾解忡. 振荡水翼波能回收在船舶节能推进中的应用[J]. 上海交通大学学报, 2013, 47(6): 923-927.
[7]  王勇, 刘海宾, 谢玉东, 李键辉, 逯建伟. 双水翼耦合振荡捕获潮流能系统2维数值模拟[J]. 四川大学学报(工程科学版), 2016, 48(5): 173-179.
[8]  李键辉, 王启先. 一种双水翼耦合振荡式捕获潮流能发电系统的水动力学特性研究[J]. 河南科技, 2018(34): 141-143.
[9]  马鹏磊, 王勇, 刘海宾, 谢玉东. 摆式振荡水翼的水动力性能分析[J]. 太阳能学报, 2018, 39(3): 665-672.
[10]  徐伟光. 基于重叠网格的三体水翼复合船粘流运动预报方法研究[D]: [硕士学位论文]. 北京: 中国舰船研究院, 2015.
[11]  刘胜. 基于CFD的三体船水动力性能计算[D]: [硕士学位论文]. 大连: 大连理工大学, 2016.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413