Photochemical reactions have an important place in photodynamic treatments. A good use of this therapeutic method requires a good mastery of the mechanisms of the reactions involved. Therefore, we have explored in this work the photosensitization mechanism of an organometallic complex of azopyridine δ-OsCl2(Azpy)2 through a calculation with the method of Time Dependent Density Functional Theory TDDFT. First, we evaluated the effect of polar and non-polar solvents on the triplet and singlet excited states of this complex. Then secondly, we highlighted the photosensitization mechanism to understand how the complex acts over the diseased cells. These investigations have shown that the δ-OsCl2(Azpy)2 complex is likely to develop photodynamic activity according to two mechanisms: on one hand, it can generate damage to DNA bases or target tissues indirectly through the production of singlet oxygen in water and in DMSO. On the second hand, through the production of the anionic superoxide radical in water can act directly or indirectly on these substrates. In addition, polar solvents are assumed to better carry out the photochemical reactions of this azopyridine complex of osmium.
References
[1]
Ang, W.H. (2007) Novel Strategies for Overcoming Drug Resistance in Transition Metal-Based Anticancer Compounds.
[2]
Boff, B. (2012) Synthesis, Physicochemical and Biological Evaluation Studies of Ruthenium(II) and Osmium(II) Anticancer Organometallic Complexes. University of Strasbourg I, Strasbourg.
[3]
Anna, C., Hotze, G., Kooijman, H., Anthony, A., Spek, L., Haasnoota, J.G. and Reedijk, J. (2004) Synthesis and Characterization of Ruthenium(II) Complexes with the New Ligand 2-Phenylazopyridine-5-Sulfonic Acid (Hsazpy): In Search for New Anticancer Agents. New Journal of Chemistry, 28, 565-569. https://doi.org/10.1039/B313746E
[4]
Nobel, K.N., Kafoumba, B., Patrice, O.W. and Nahossé, Z. (2018) DSSCs Theoretical Investigation of Structural and Electronic Properties of Ruthenium Azopyridine Complexes Dyes for Photovoltaic Applications by Using DFT and TD-DFT Methods. European Scientific Journal Edition, 14, 424-450. https://doi.org/10.19044/esj.2018.v14n21p424
[5]
Atkins, P. and Jones, L. (1999) Chemistry: Molecules, Matter, and Change. 4th Edition, WH Freeman, New York.
[6]
Shen, L., Ji, H.F. and Zhang, H.Y. (2006) A TD-DFT Study on Photo-Physicochemical Properties of Hypocrellin A and Its Implications for Elucidating the Photosensitizing Mechanisms of the Pigment. Journal of Photochemistry and Photobiology A: Chemistry, 180, 65-68. https://doi.org/10.1016/j.jphotochem.2005.09.019
[7]
Van Straten, D., Mashayekhi, V., De Bruijn, H.S., Oliveira, S. and Robinson, D.J. (2017) Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers, 9, 19. https://doi.org/10.3390/cancers9020019
[8]
Angotti, M. (2001) Etude par Spectrométrie de Masse des Photoréactions Laser de Sensibilisants Colorés Utilisés en Thérapie Photodynamique(PDT). Université de Metz, Nancy and Metz.
[9]
Patrice, O.W., Kafoumba, B., Kouakou, N.N., Richard, K.M.G., Guillaume, K.C. and Nahosse, Z. (2019) Effect of Metal on the Properties of the Azopyridine Complexes of Iron, Ruthenium and Osmium. Asian Journal of Applied Chemistry Research, 3, 1-16. https://doi.org/10.9734/ajacr/2019/v3i130084
[10]
Awuah, S.G., Polreis, J., Biradar, V. and You, Y.J. (2011) Singlet Oxygen Generation by Novel NIR BODIPY Dyes. Organic Letters, 13, 3884-3887. https://doi.org/10.1021/ol2014076
[11]
Nagappanpillai, A., Avirah, R.R. and Danaboyina, R. (2010) Tuning Photosensitized Singlet Oxygen Generation Efficiency of Novel Aza-BODIPY Dyes. Organic Letters, 12, 5720-5723. https://doi.org/10.1021/ol102562k
[12]
Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H., Izmaylov, A., Bloino, J., Zheng, G. and Sonnenberg, J. (2009) Gaussian 09. Gaussian Inc., Wallingford.
[13]
Zhao, X., Zheng, Z.B., Feng, S., Shi, Z.Q. and Chen, D.Z. (2009) A TD-DFT Study on the Photo-Physicochemical Properties of Chrysophanol from Rheum. International Journal of Molecular Sciences, 10, 3186-3193. https://doi.org/10.3390/ijms10073186
[14]
Cossi, M., Barone, V., Cammi, R. and Tomasi, J. (1996) Ab Initio Study of Solvated Molecules: A New Implementation of the Polarizable Continuum Model. Chemical Physics Letters, 255, 327-335. https://doi.org/10.1016/0009-2614(96)00349-1
[15]
Goswami, S., Chakravarty, A.R. and Chakravorty, A. (1981) Chemistry of Ruthenium. 2.’Synthesis, Structure, and Redox Properties of 2-(Ary1azo)pyridine Complexes. Inorganic Chemistry, 20, 2247-2250. https://doi.org/10.1021/ic50221a061
[16]
Velders, A.H., Karlijn, V.D.S., Anna, C.G.H., Jan, R., Huub, K., and Spek, A.L. (2004) Dichlorobis(2-Phenylazopyridine)Ruthenium(II) Complexes: Characterisation, Spectroscopic and Structural Properties of Four Isomers. Dalton Transactions, No. 3, 448-455. https://doi.org/10.1039/B313182C
[17]
Rodica-Mariana, I. (2007) Photodynamic Therapy (pdt): A Photochemical Concept with Medical Applications. Revue Roumaine de Chimie, 52, 1093-1102.
[18]
Mazzone, G., Alberto, M.E., De Simone, B.C., Marino, T. and Russo, N. (2016) Can Expanded Bacteriochlorins Act as Photosensitizers in Photodynamic Therapy? Good News from Density Functional Theory Computations. Molecules, 21, 288. https://doi.org/10.3390/molecules21030288
[19]
Wu, W.T., Shao, X.D., Wu, M.B. and Zhao, J.Z. (2017) Controllable Photodynamic Therapy Implemented by Regulating Singlet Oxygen Efficiency. Advanced Science, 4, Article ID: 1700113. https://doi.org/10.1002/advs.201700113
[20]
Benali, B., Fadouach, M., Kabouchi, B., Kadiri, A. and Nouchi, G. (1993) Effet de la Polarité du Solvant sur les Propriétés des états Electroniques Excités du l, l’-Binaphtyle: Etude par Spectroscopie UV-Visible. Spectrochimica Acta Part A: Molecular Spectroscopy, 49, 1163-1169. https://doi.org/10.1016/0584-8539(93)80075-L
[21]
Guedes, R.C. and Eriksson, L.A. (2005) Theoretical Study of Hypericin. Journal of Photochemistry and Photobiology A: Chemistry, 172, 293-299. https://doi.org/10.1016/j.jphotochem.2004.12.025
[22]
Ji, L.N., Zhang, Q.L. and Liu, J.G. (2001) DNA Structure, Binding Mechanism and Biology Functions of Polypyridyl Complexes. Science in China Series B: Chemistry, 44, 246-259. https://doi.org/10.1007/BF02879615
[23]
Lawrence, D., Vaidyanathan, V. and Nair, B. (2006) Synthesis, Characterization and DNA Binding Studies of Two Mixed Ligand Complexes of Ruthenium (II). Journal of Inorganic Biochemistry, 100, 1244-1251. https://doi.org/10.1016/j.jinorgbio.2006.02.003
[24]
Wee Han, A. (2007) Novel Strategies for Overcoming Drug Resistance in Transition Metal-Based Anticancer Compounds. école Polytechnique Fédérale de Lausanne, Lausanne.
[25]
Oliveira, K., Souza, J., Gobo, N., Assis, F. and Brocksom, T. (2015) Basic Concepts and Applications of Porphyrins, Chlorins and Phthalocyanines as Photosensitizers in Photonic Therapies. Revista Virtual de Química, 7, 310-335.
[26]
Musa, K.A.K., Matxain, J.M. and Eriksson, L.A. (2007) Mechanism of Photoinduced Decomposition of Ketoprofen. Journal of Medicinal Chemistry, 50, 1735-1743. https://doi.org/10.1021/jm060697k
[27]
Jorge, L., Johan, R. and Eriksson, L.A. (2003) Theoretical Study of Phototoxic Reactions of Psoralens. Journal of Photochemistry and Photobiology A: Chemistry, 154, 235-243. https://doi.org/10.1016/S1010-6030(02)00351-9
[28]
Shen, L., Ji, H.-F. and Zhang, H.Y. (2005) A TD-DFT Study on Triplet Excited-State Properties of Curcumin and Its Implications in Elucidating the Photosensitizing Mechanisms of the Pigment. Chemical Physics Letters, 409, 300-303. https://doi.org/10.1016/j.cplett.2005.05.023
[29]
Fenton, H. (1894) Oxidation of Tartaric Acid in the Presence of Iron. Journal of the Chemical Society, 65, 899-910.
[30]
Haber, F. and Weiss, J. (1934) The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 147, 332-351. https://doi.org/10.1098/rspa.1934.0221
[31]
Halliwell, B. (1999) Antioxidant Defence Mechanisms: From the Beginning to the End (of the Beginning). Free Radical Research, 31, 261-272. https://doi.org/10.1080/10715769900300841