全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2020 

Medusa: Software to build and analyze ensembles of genome-scale metabolic network reconstructions

DOI: 10.1371/journal.pcbi.1007847

Keywords: Simulation and modeling,Metabolites,Metabolic networks,Machine learning,Combined bisulfite restriction analysis,Genomics,Staphylococcus aureus,Biophysical simulations

Full-Text   Cite this paper   Add to My Lib

Abstract:

Uncertainty in the structure and parameters of networks is ubiquitous across computational biology. In constraint-based reconstruction and analysis of metabolic networks, this uncertainty is present both during the reconstruction of networks and in simulations performed with them. Here, we present Medusa, a Python package for the generation and analysis of ensembles of genome-scale metabolic network reconstructions. Medusa builds on the COBRApy package for constraint-based reconstruction and analysis by compressing a set of models into a compact ensemble object, providing functions for the generation of ensembles using experimental data, and extending constraint-based analyses to ensemble scale. We demonstrate how Medusa can be used to generate ensembles and perform ensemble simulations, and how machine learning can be used in conjunction with Medusa to guide the curation of genome-scale metabolic network reconstructions. Medusa is available under the permissive MIT license from the Python Packaging Index (https://pypi.org) and from github (https://github.com/opencobra/Medusa), and comprehensive documentation is available at https://medusa.readthedocs.io/en/latest

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133