全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Automatika  2020 

Sensor fault detection and isolation for a class of uncertain nonlinear system using sliding mode observers

DOI: https://doi.org/10.1080/00051144.2019.1706911

Full-Text   Cite this paper   Add to My Lib

Abstract:

ABSTRACT Quick and timely fault detection is of great importance in control systems reliability. Undetected faulty sensors could result in irreparable damages. Although fault detection and isolation (FDI) methods in control systems have received much attention in the last decade, these techniques have not been applied for some classes of nonlinear systems yet. This paper deals with the issues of sensor fault detection and isolation for a class of Lipschitz uncertain nonlinear system. By introducing a coordinate transformation matrix for states and output, the original system is first divided into two subsystems. The first subsystem is affected by uncertainty and disturbance. The second subsystem just has sensor faults. The nonlinear term is separated to linear and pure nonlinear parts. For fault detection, two sliding mode observers (SMO) are designed for the two subsystems. The stability condition is obtained based on the Lyapunov approach. The necessary matrices and parameters are obtained by solving the linear matrix inequality (LMI) problem. Furthermore, two sliding mode observers are designed for fault isolation. Finally, the effectiveness of the proposed approach is illustrated by simulation examples

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413