全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二氧化碳催化加氢制备甲醇的研究进展
Research Progress on the Catalytic Hydrogenation of Carbon Dioxide to Methanol

DOI: 10.12677/AMC.2021.91004, PP. 38-43

Keywords: 二氧化碳,甲醇,铜基催化剂
Carbon Dioxide
, Methanol, Copper-Based Catalyst

Full-Text   Cite this paper   Add to My Lib

Abstract:

日益增长的二氧化碳排放造成了严重的环境问题,因此充分利用二氧化碳已成为研究的热点,最有效的途径之一是将CO2选择性加氢为甲醇,这不仅可以有效地减少CO2排放,而且还可以制备其他化学品和燃料。本文概述了通过直接加氢CO2进行甲醇合成重大进展。包括热力学方面的挑战,讨论了常规铜基催化剂的研究进展,包括载体和助催化剂的结构,化学和电子促进的作用等。
Increasing carbon dioxide emissions have caused serious environmental problems. Therefore, making full use of carbon dioxide has become a research hotspot. One of the most effective ways is to selectively hydrogenate CO2 to methanol, which can not only effectively reduce CO2 emissions, but also prepare other chemicals and fuels. This article outlines the major progress in methanol synthesis through direct hydrogenation of CO2. Including the challenges of thermodynamics, the research progress of conventional copper-based catalysts was discussed, including the structure of support and co-catalyst, the role of chemistry and electron promotion, etc.

References

[1]  IEA (2018) Global Energy & CO2 Status Report.
[2]  He, M., Sun, Y. and Han, B. (2013) Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling. Angewandte Chemie International Edition, 52, 9620-9633.
https://doi.org/10.1002/anie.201209384
[3]  Goeppert, A., Czaun, M., Jones, J.P., Surya Prakash, G.K. and Olah, G.A. (2014) Recycling of Carbon Dioxide to Methanol and Derived Products—Closing the Loop. Chemical Society Reviews, 43, 7995-8048.
https://doi.org/10.1039/C4CS00122B
[4]  Razali, N.A.M., Lee, K.T., Bhatia, S. and Mohamed, A.R. (2012) Heterogeneous Catalysts for Production of Chemicals Using Carbon Dioxide as Raw Material: A Review. Renewable and Sustainable Energy Reviews, 16, 4951-4964.
https://doi.org/10.1016/j.rser.2012.04.012
[5]  Gao, P., Yang, H., Zhang, L., Zhang, C., Zhong, L., Wang, H., Wei, W. and Sun, Y. (2016) Fluorinated Cu/Zn/Al/Zrhydrotalcites Derived Nanocatalysts for CO2 Hydrogenation to Methanol. Journal of CO2 Utilization, 16, 32-41.
https://doi.org/10.1016/j.jcou.2016.06.001
[6]  Zhang, C., Yang, H., Gao, P., Zhu, H., Zhong, L., Wang, H., Wei, W. and Sun, Y. (2017) Preparation and CO2 Hydrogenation Catalytic Properties of Alumina Microsphere Supported Cu-Based Catalyst by Deposition-Precipitation Method. Journal of CO2 Utilization, 17, 263-272.
https://doi.org/10.1016/j.jcou.2016.11.015
[7]  Sloczynski, J., Grabowski, R., Olszewski, P., Kozlowska, A., Stoch, J., Lachowska, M. and Skrzypek, J. (2006) Effect of Metal Oxide Additives on the Activity and Stability of Cu/ZnO/ZrO2 Catalysts in the Synthesis of Methanol from CO2 and H2. Applied Catalysis A: General, 310, 127-137.
https://doi.org/10.1016/j.apcata.2006.05.035
[8]  Mikkelsen, M., J?rgensen, M. and Krebs, F.C. (2010) The Teraton Challenge. A Review of Fixation and Transformation of Carbon Dioxide. Energy & Environmental Science, 3, 43-81.
https://doi.org/10.1039/B912904A
[9]  Kunkes, E.L. and Behrens, M. (2013) Methanol Chemistry. In: Schl?gl, R., Ed., Chemical Energy Storage, De Gruyter, Berlin, 413-435.
[10]  Bart, J. and Sneeden, R. (1987) Copper-Zinc Oxide-Alumina Methanol Catalysts Revisited. Catalysis Today, 2, 1-124.
https://doi.org/10.1016/0920-5861(87)80001-9
[11]  Simakov, D.S.A (2017) Thermocatalytic Conversion of CO2. In: Simakov, D.S.A., Ed., Renewable Synthetic Fuels and Chemicals from Carbon Dioxide: Fundamentals, Catalysis, Design Considerations and Technological Challenges, Springer, Cham, 1-25.
https://doi.org/10.1007/978-3-319-61112-9
[12]  Liao, F., Huang, Y., Ge, J., Zheng, W., Tedsree, K., Collier, P., Hong, X. and Tsang, S. (2011) Morphology-Dependent Interactions of ZnO with Cu Nanoparticles at the Materials’ Interface in Selective Hydrogenation of CO2 to CH3OH. Angewandte Chemie International Edition, 50, 2162-2165.
https://doi.org/10.1002/anie.201007108
[13]  Meunier, F.C. (2011) Mixing Copper Nanoparticles and ZnO Nanocrystals: A Route towards Understanding the Hydrogenation of CO2 to Methanol. Angewandte Chemie International Edition, 50, 4053-4054.
https://doi.org/10.1002/anie.201100011
[14]  Frei, E., Schaadt, A., Ludwig, T., Hillebrecht, H. and Krossing, I. (2014) The Influence of the Precipitation/Ageing Temperature on a Cu/ZnO/ZrO2 Catalyst for Methanol Synthesis from H2 and CO2. ChemCatChem, 6, 1721-1730.
https://doi.org/10.1002/cctc.201300665
[15]  Samson, K., ?liwa, M., Socha, R.P., Góra-Marek, K., Mucha, D., Rutkowska-Zbik, D., Paul, J.F., Ruggiero-Miko?ajczyk, M., Grabowski, R. and S?oczyński, J. (2014) Influence of ZrO2 Structure and Copper Electronic State on Activity of Cu/ZrO2 Catalysts in Methanol Synthesis from CO2. ACS Catalysis, 4, 3730-3741.
https://doi.org/10.1021/cs500979c
[16]  Rodriguez, J.A., Grinter, D.C., Liu, Z., Palomino, R.M. and Senanayake, S.D. (2017) Ceria-Based Model Catalysts: Fundamental Studies on the Importance of the Metal-Ceria Interface in CO Oxidation, the Water-Gas Shift, CO2 Hydrogenation, and Methane and Alcohol Reforming. Chemical Society Reviews, 46, 1824-1841.
https://doi.org/10.1039/C6CS00863A
[17]  Witoon, T., Bumrungsalee, S., Chareonpanich, M. and Limtrakul, J. (2015) Effect of Hierarchical Meso-Macroporous Alumina-Supported Copper Catalyst for Methanol Synthesis from CO2 Hydrogenation. Energy Conversion and Management, 103, 886-889.
https://doi.org/10.1016/j.enconman.2015.07.033
[18]  Wang, Z.-Q., Xu, Z.-N., Peng, S.-Y., Zhang, M.-J., Lu, G., Chen, Q.-S., Chen, Y. and Guo, G.-C. (2015) High-Performance and Long-Lived Cu/SiO2 Nanocatalyst for CO2 Hydrogenation. ACS Catalysis, 5, 4255-4259.
https://doi.org/10.1021/acscatal.5b00682
[19]  Chen, K., Duan, X., Fang, H., Liang, X. and Yuan, Y. (2018) Selective Hydrogenation of CO2 to Methanol Catalyzed by Cu Supported on Rod-Like La2O2CO3. Catalysis Science and Technology, 8, 1062-1069.
https://doi.org/10.1039/C7CY01998J
[20]  Witoon, T., Numpilai, T., Phongamwong, T., Donphai, W., Boonyuen, C., Warakulwit, C., Chareonpanich, M. and Limtrakul, J. (2018) Enhanced Activity, Selectivity and Stability of a CuO-ZnO-ZrO2 Catalyst by Adding Graphene Oxide for CO2 Hydrogenation to Methanol. Chemical Engineering Journal, 334, 1781-1791.
https://doi.org/10.1016/j.cej.2017.11.117
[21]  Schumann, J., Eichelbaum, M., Lunkenbein, T., Thomas, N.,álvarez Galván, M.C., Schl?gl, R. and Behrens, M. (2015) Promoting Strong Metal Support Interaction: Doping ZnO for Enhanced Activity of Cu/ZnO:M (M = Al, Ga, Mg) Catalysts. ACS Catalysis, 5, 3260-3270.
https://doi.org/10.1021/acscatal.5b00188
[22]  Li, M.M.J., Chen, C., Ayval?, T., Suo, H., Zheng, J., Teixeira, I.F., Ye, L., Zou, H., O’Hare, D. and Tsang, S.C.E. (2018) CO2 Hydrogenation to Methanol over Catalysts Derived from Single Cationic Layer CuZnGa LDH Precursors. ACS Catalysis, 8, 4390-4401.
https://doi.org/10.1021/acscatal.8b00474
[23]  Yang, Q., Xu, Q. and Jiang, H.L. (2017) Metal-Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect for Enhanced Catalysis. Chemical Society Reviews, 46, 4774-4808.
https://doi.org/10.1039/C6CS00724D
[24]  Rungtaweevoranit, B., Baek, J., Araujo, J.R., Archanjo, B.S., Choi, K.M., Yaghi, O.M. and Somorjai, G.A. (2016) Copper Nanocrystals Encapsulated in Zr-Based Metal-Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol. Nano Letters, 16, 7645-7649.
https://doi.org/10.1021/acs.nanolett.6b03637
[25]  Waugh, K.C. (2012) Methanol Synthesis. Catalysis Letters, 142, 1153-1166.
https://doi.org/10.1007/s10562-012-0905-2
[26]  Song, H., Laudenschleger, D., Carey, J.J., Ruland, H., Nolan, M. and Muhler, M. (2017) Spinel-Structured ZnCr2O4 with Excess Zn Is the Active ZnO/Cr2O3 Catalyst for High-Temperature Methanol Synthesis. ACS Catalysis, 7, 7610-7622.
https://doi.org/10.1021/acscatal.7b01822
[27]  Wang, J., Li, G.N., Li, Z.L., Tang, C.Z., Feng, Z.C., An, H.Y., Liu, H.L., Liu, T.F. and Li, C. (2017) A Highly Selective and Stable ZnO-ZrO2 Solid Solution Catalyst for CO2 Hydrogenation to Methanol. Science Advances, 3, e1701290.
https://doi.org/10.1126/sciadv.1701290

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413