全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Experimental Characterization of ALD Grown Al2O3 Film for Microelectronic Applications

DOI: 10.4236/ampc.2021.111002, PP. 7-19

Keywords: Dielectrics, High-k, Thin Film Capacitors, Atomic Layer Deposition, Microfabrication

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study of high dielectric materials has received great attention lately as a key passive component for the application of metal-insulator-metal (MIM) capacitors. In this paper, 50 nm thick Al2O3 thin films have been prepared by atomic layer deposition technique on indium tin oxide (ITO) pre-coated glass substrates and titanium nitride (TiN) coated Si substrates with typical MIM capacitor structure. Photolithography and metal lift-off technique were used for processing of the MIM capacitors. Semiconductor Analyzer with probe station was used to perform capacitance-voltage (C-V) characterization with low-medium frequency range. Current-voltage (I-V) characteristics of MIM capacitors were measured on precision source/measurement system. The performance of Al2O3 films of MIM capacitors on glass was examined in the voltage range from 5 to 5 V with a frequency range from 10 kHz to 5 MHz. Au/Al2O3/ITO/Glass MIM capacitors demonstrate a capacitance density of 1.6 fF/μm2at 100 kHz, a loss tangent ~0.005 at 100 kHz and a leakage current of 1.79 × 108 A/cm2 at 1 MV/cm (5 V) at room temperature. Au/Al2O3/TiN/Si MIM capacitors demonstrate a capacitance density of 1.5 fF/μm2 at 100

References

[1]  Zhang, G.Q., Graef, M. and van Roosmalen, F. (2006) The Rationale and Paradigm of “More than Moore”. 56th Electronic Components and Technology Conference, San Diego, 30 May-2 June 2006, 151-157.
[2]  Zurcher, P., Alluri, P., Chu, P., Duvallet, A., Happ, C., Henderson, R., et al. (2000) Integration of Thin Film MIM Capacitors and Resistors into Copper Metallization Based RF-CMOS and Bi-CMOS Technologies. International Electron Devices Meeting 2000, San Francisco, 10-13 December 2000, 153-156.
https://doi.org/10.1109/IEDM.2000.904281
[3]  Pascual, E.M., Jerónimo, G.M., Vargas, H.U., Torres, R.T. and Reyes, J.M. (2020) MIM Capacitors as Simple Test Vehicles for the DC/AC Characterization of ALD-Al2O3 with Auto-Correction of Parasitic Inductance. Microelectronics Reliability, 104, 113516.
https://doi.org/10.1016/j.microrel.2019.113516
[4]  Yu, X.F., Zhu, C.X., Hu, H., Chin, A., Li, M.F., Cho, B.J., et al. (2003) A High-Density MIM Capacitor (13 fF/μm2) Using ALD HfO2 Dielectrics. IEEE Electron Device Letters, 24, 63-65.
https://doi.org/10.1109/LED.2002.808159
[5]  Lin, S.H., Chiang, K.C., Chin, A. and Yeh, F.S. (2009) High-Density and Low-Leakage-Current MIM Capacitor Using Stacked TiO2/ZrO2 Insulators. IEEE Electron Device Letters, 30, 715-717.
https://doi.org/10.1109/LED.2009.2022775
[6]  Chen, S.B., Lai, C.H., Chin, A., Hsieh, J.C. and Liu, J. (2002) High-Density MIM Capacitors Using Al2O3 and AlTiOx Dielectrics. IEEE Electron Device Letters, 23, 185-187.
https://doi.org/10.1109/55.992833
[7]  Kwon, C.H., Kim, J.H., Jung, I.S., Shin, H. and Yoon, K.H. (2003) Preparation and Characterization of TiO2-SiO2 Nano-Composite Thin Films. Ceramics International, 29, 851-856.
https://doi.org/10.1016/S0272-8842(03)00019-1
[8]  Jõgi, I., Pärs, M., Aarik, J., Aidla, A., Laan, M., Sundqvist, J., et al. (2008) Conformity and Structure of Titanium Oxide Films Grown by Atomic Layer Deposition on Silicon Substrates. Thin Solid Films, 516, 4855-4862.
https://doi.org/10.1016/j.tsf.2007.09.008
[9]  Rathee, D., Arya, S.K. and Kumar, M. (2013) Preparation and Characterization of TiO2 and SiO2 Thin Films. World Journal of Nano Science and Engineering, 1, 84-88.
https://doi.org/10.4236/wjnse.2011.13013
[10]  Rahmati, M. and Mozafari, M. (2019) Biocompatibility of Alumina-Based Biomaterials—A Review. Journal of Cellular Physiology, 234, 3321-3335.
https://doi.org/10.1002/jcp.27292
[11]  McPherson, J.W., Kim, J., Shanware, A., Mogul, H. and Rodriguez, J. (2003) Trends in the Ultimate Breakdown Strength of High Dielectric-Constant Materials. IEEE Transactions on Electron Devices, 50, 1771-1778.
https://doi.org/10.1109/TED.2003.815141
[12]  Zhou, J.H., Chang, H.D., Liu, H.G., Liu, G.M., Xu, W.J., Li, Q., Li, S.M., He, Z.Y. and Li, H.O. (2015) MIM Capacitors with Various Al2O3 Thickness for GaAs RFIC Application. Journal of Semiconductors, 36, 054004.
https://doi.org/10.1088/1674-4926/36/5/054004
[13]  Wilk, G.D., Wallace, R.M. and Anthony, J.M. (2001) High-κ Gate Dielectrics: Current Status and Materials Properties Considerations. Journal of Applied Physics, 89, 5243-5275.
https://doi.org/10.1063/1.1361065
[14]  International Technology Roadmap for Semiconductors.
http://public.itrs.net
[15]  Lee, K.H., Jang, H.W., Kim, K.-B., Tak, Y.-H. and Lee, J.-L. (2004) Mechanism for the Increase of Indium-Tin-Oxide Work Function by O2 Inductively Coupled Plasma Treatment. Journal of Applied Physics, 95, 586.
https://doi.org/10.1063/1.1633351
[16]  Zhao, X. and Vanderbilt, D. (2002) Phonons and Lattice Dielectric Properties of zirconia. Physical Review B, 65, 075105.
https://doi.org/10.1103/PhysRevB.65.075105
[17]  Lee, F., Dai, J.Y., Wong, K.H., Chan, H.L.W. and Choy, C.L. (2003) Growth and Characterization of Hf-Aluminate High-k Gate Dielectric Ultrathin Films with Equivalent Oxide Thickness Less than 10 Å. Journal of Applied Physics, 93, 3665.
https://doi.org/10.1063/1.1554764
[18]  A Refractory Ceramic Oxide (2001).
https://www.azom.com/article.aspx?ArticleID=52
[19]  Yota, J., Shen, H. and Ramanathan, R. (2013) Characterization of Atomic Layer Deposition HfO2, Al2O3, and Plasma Enhanced Chemical Vapor Deposition Si3N4 as Metal-Insulator-Metal Capacitor Dielectric for GaAs HBT Technology. Journal of Vacuum Science Technology A, 31, 01A134.
https://doi.org/10.1116/1.4769207
[20]  Stathis, J.H. (1999) Percolation Models for Gate Oxide Breakdown. Journal of Applied Physics, 86, 5757.
https://doi.org/10.1063/1.371590
[21]  Albina, A., Taberna, P.L., Cambronne, J.P., Simon, P., Flahaut, E. and Lebey, T. (2006) Impact of the Surface Roughness on the Electrical Capacitance. Microelectronics Journal, 37, 752-758.
https://doi.org/10.1016/j.mejo.2005.10.008

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413