全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Marshall-Olkin Right Truncated Fréchet-Inverted Weibull Distribution: Its Properties and Applications

DOI: 10.4236/ojmsi.2021.91005, PP. 74-89

Keywords: Marshall and Olkin, Moment Generating Function, Density Function, Order Statistics, Reliability Function, Inverse Weibull Distribution, Maximum Likelihood

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, a new probability distribution is proposed by using Marshall and Olkin transformation. Some of its properties such as moments, moment generating function, order statistics and reliability functions are derived. The method of maximum likelihood is used to estimate the model parameters. The graphs of the reliability function and hazard rate function are plotted by taken some values of the parameters. Three real life applications are introduced to compare the behaviour of the new distribution with other distributions.

References

[1]  Dubey, S.D. (1970) Compound Gamma, Beta and F Distribution. Metrika, 16, 27-31.
https://doi.org/10.1007/BF02613934
[2]  Voda, V.G. (1972) On the Inverse Rayleigh Distributed Random Varaible. Reports of Statistical Application Research, 19, 13-21.
[3]  Calabria, R. and Pulcini, G. (1990) On the Maximum Likehood and Least-Squares Estimation in the Inverse Weibull Distributions. Statistics Applicata, 2, 53-66.
[4]  Dey, S. (2007) Inverted Exponential Distribution as a Life Distribution as Model from a Bayesian Viewpoint. Data Science Journal, 6, 107-113.
https://doi.org/10.2481/dsj.6.107
[5]  Rosaiah, K. and Kantam, R.R.L. (2005) Acceptance Sampling Based on the Inverse Rayleigh Distribution. Stochastics and Quality Control, 20, 277-286.
https://doi.org/10.1515/EQC.2005.277
[6]  Sharma, V.K., Singh, U. and Agiwal, V. (2015) The Inverse Lindly Distribution: A Stress-Strength Relibility model with Application to Head and Neck Cancer Data. Journal of Industrial and Production Engineering, 32, 162-173.
https://doi.org/10.1080/21681015.2015.1025901
[7]  Fréchet, M. (1927) Sur la loi de Probabilité de l'écart Maximum. Annales de la Société Polonaise de Mathematique, 6, 93-116.
[8]  Haq, M.A., Usman, R.M., Hashmi, S. and Al-Omeri, A.I. (2019) The Marshall-Olkin Length-Biased Exponential Distribution and Its Applications. Journal of King Saud University-Science, 31, 246-251.
https://doi.org/10.1016/j.jksus.2017.09.006
[9]  Marshall, A.W. and Olkin, I. (1997) A New method for Adding a Parameter to a Family of Distributions with Application to the Exponential and Weibull Families. Biometrika, 84, 641-652.
https://doi.org/10.1093/biomet/84.3.641
[10]  Hinkley, D. (1977) On Quick Choice of Power Transformation. Journal of the Royal Statistical Society, Series C, 26, 67-69.
https://doi.org/10.2307/2346869
[11]  Murthy, D.N.P., Xie, M. and Jiang, R. (2004) Weibull Models. John Wily & Sons, New York.
[12]  Bhaumik, D.K., Kapur, K. and Gibbons, R.D. (2009) Testing Parameters of Agamma Distribution for Small Samples. Technometrics, 51, 326-334.
https://doi.org/10.1198/tech.2009.07038
[13]  Usman, R.M. and Ahsan ul Haq, M. (2020) The Marshall-Olkin Extended Inverted Kumaraswamy Distribution Theory and Applications. Journal of King Saud University-Science, 32, 356-365.
https://doi.org/10.1016/j.jksus.2018.05.021

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133