全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modelling of the High-Energy Ball Milling Process

DOI: 10.4236/ampc.2021.111004, PP. 31-44

Keywords: Ball Mill Modelling, Discrete Element Method, Planetary Ball Mill, High-Energy Ball Milling

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, the milling parameters of high energy ball mill (Fritsch Pulverisette 7) like vial geometry, number and size of balls and speed of the mill were modelled and discussed. Simulations through discrete element method (DEM) provide correlation between the milling parameters. A mathematical model is used to improve and develop this process. The results show that the loss of powder mass can remarkably improve the performance of milling. The balls made of stainless-steel have a positive effect on the milling efficiency. The simulation shows that the high ball milling velocities can contribute to faster particle size reduction.

References

[1]  Maurice, D. and Courtney, T.H. (1994) Modeling of Mechanical Alloying: Part I. Deformation, Coalescence, Band Fragmentation Mechanisms. Metallurgical and Materials Transactions A, 25, 147-158.
https://doi.org/10.1007/BF02646683
[2]  Bhattacharya, A.K. and Arzt, E. (1992) Temperature Rise during Mechanical Alloying. Scripta Metallurgica et Materialia, 27, 749-754.
https://doi.org/10.1016/0956-716X(92)90500-E
[3]  Murty, B.S., Mohan, M.D., Mohan Rao, M. and Ranganathan, S. (1995) Milling Maps and Amorphization during Mechanical Alloying. Acta Metallurgica et Materialia, 43, 2443-2450.
https://doi.org/10.1016/0956-7151(94)00402-1
[4]  Rosenkranz, S., Breitung-Faes, S. and Kwade, A. (2011) Experimental Investigations and Modelling of the Ball Motion in Planetary Ball Mills. Powder Technology, 212, 224-230.
https://doi.org/10.1016/j.powtec.2011.05.021
[5]  Zhao, X. and Shaw, L. (2017) Modeling and Analysis of High-Energy Ball Milling through Attritors. Metallurgical and Materials Transactions A, 48, 4324-4333.
https://doi.org/10.1007/s11661-017-4195-6
[6]  Ward, T.S., Chen, W., Schoenitz, M., Dave, R.N. and Dreizin, E.L. (2005) A Study of Mechanical Alloying Processes Using Reactive Milling and Discrete Element Modeling. Acta Materialia, 53, 2909-2918.
https://doi.org/10.1016/j.actamat.2005.03.006
[7]  Jiang, X., Trunov, M.A., Schoenitz, M., Dave, R.N. and Dreizin, E.L. (2009) Mechanical Alloying and Reactive Milling in a High Energy Planetary Mill. Journal of Alloys and Compounds, 478, 246-251.
https://doi.org/10.1016/j.jallcom.2008.12.021
[8]  Santhanam, P.R. and Dreizin, E.L. (2012) Predicting Conditions for Scaled-Up Manufacturing of Materials Prepared by Ball Milling. Powder Technology, 221, 403-411.
https://doi.org/10.1016/j.powtec.2012.01.037
[9]  Santhanam, P.R., Ermoine, A. and Dreizin, E.L. (2013) Discrete Eement Model for an Attritor Mill with Impeller Responding to Interactions with Milling Balls. Chemical Engineering Science, 101, 366-373.
https://doi.org/10.1016/j.ces.2013.06.048
[10]  Feng, Y.T., Han, K. and Owen, D.R.J. (2004) Discrete Element Simulation of the Dynamics of High Energy Planetary Ball Milling Processes. Materials Science and Engineering A, 375-377, 815-819.
https://doi.org/10.1016/j.msea.2003.10.162
[11]  Yang, R.Y., Jayasundara, C.T., Yu, A.B. and Curry, D. (2006) DEM Simulation of the Flow of Grinding Media in Isa Mill. Minerals Engineering, 19, 984-994.
https://doi.org/10.1016/j.mineng.2006.05.002
[12]  Cleary, P.W. and Morrison, R.D. (2011) Understanding Fine Ore Breakage in a Laboratory Scale Ball Mill Using DEM. Minerals Engineering, 24, 352-366.
https://doi.org/10.1016/j.mineng.2010.12.013
[13]  Lu, S.Y., Mao, Q.J., Peng, Z., Li, X.D. and Yan, J.H. (2012) Simulation of Ball Motion and Energy Transfer in a Planetary Ball Mill. Chinese Physics B, 21, 566-574.
https://doi.org/10.1088/1674-1056/21/7/078201
[14]  Govender, I., Cleary, P.W. and Mainza, A.N. (2013) Comparisons of PEPT Derived Charge Features in Wet Milling Environments with a Friction-Adjusted DEM Model. Chemical Engineering Science, 97, 162-175.
https://doi.org/10.1016/j.ces.2013.04.023
[15]  Zidane, D., Bergheul, S., Rezoug, T. and Hadji, M. (2011) Study of the Temperature Variations of Al and Ti in Mechanical Alloying. Journal of Materials Engineering and Performance, 20, 1109-1113.
https://doi.org/10.1007/s11665-010-9721-2
[16]  Gaffet, E. (1991) Planetary Ball-Milling: An Experimental Parameter Phase Diagram. Materials Science and Engineering: A, 132, 181-193.
https://doi.org/10.1016/0921-5093(91)90374-V
[17]  Fritsch Planetary Micro Mill PULVERISETTE 7.
http://www.fritsch-milling.com/products/milling/planetary-mills/pulverisette-7-classic-line/
description
[18]  Harris, K.D.M. (2013) Mechanochemical Synthesis: How Grinding Evolves. Nature Chemistry, 5, 12-14.
https://doi.org/10.1038/nchem.1539
[19]  Frišvcić, T., Halasz, I., Beldon, P.J., Belenguer, A.M., Adams, F., Kimber, S.A.J., Honkimäki, V. and Dinnebier, R.E. (2013) Real-Time and in Situ Monitoring of Mechanochemical Milling Reactions. Nature Chemistry, 5, 66-73.
https://doi.org/10.1038/nchem.1505
[20]  Burgio, N., Iasonna, A., Magini, M., Martelli, S. and Padella, F. (1991) Mechanical Alloying of the Fe-Zr System. Correlation between Input Energy and End Products. IL Nuovo Cimento D, 13, 459-476.
https://doi.org/10.1007/BF02452130
[21]  Broseghini, M., D’Incau, M., Gelisio, L., Pugno, N.M. and Scardi, P. (2016) Effect of Jar Shape on High-Energy Planetary Ball Milling Efficiency: Simulations and Experiments. Materials & Design, 110, 365-374.
https://doi.org/10.1016/j.matdes.2016.06.118
[22]  MSC Adams.
http://www.mscsoftware.com/it/product/adams
[23]  Hertz, H. (1882) On the Fixed Elastic Body Contact. Journal für die reine und angewandte Mathematik (Crelles Journal), 92, 156-171.
https://doi.org/10.1515/crll.1882.92.156
[24]  Mindlin, R.D. (1949) Compliance of Elastic Bodies in Contact. Transactions of the ASME, Journal of Applied Mechanics, 16, 259-268.
[25]  Tsuji, Y., Tanaka, T. and Ishida, Y. (1992) Lagrangian Numerical Simulation of Plug Flow of Cohesion Less Particles in a Horizontal Pipe. Powder Technology, 71, 239-250.
https://doi.org/10.1016/0032-5910(92)88030-L
[26]  http://tm.spbstu.ru/images/2/28/EDEM2.4_user_guide.pdf
[27]  Barrios, G.K.P., Carvalho, R.M. and Tavares, L.M. (2011) Modeling Breakage of Mono Dispersed Particles in Unconfined Beds. Minerals Engineering, 24, 308-318.
https://doi.org/10.1016/j.mineng.2010.09.018
[28]  Tavares, L.M. and King, R.P. (2004) Measurement of the Load-Deformation Response from Impact-Breakage of Particles. International Journal of Mineral Processing, 74, S267-S277.
https://doi.org/10.1016/j.minpro.2004.07.017
[29]  Gilardi, G. and Sharf, I. (2012) Literature Survey of Contact Dynamics Modelling. Mechanism and Machine Theory, 37, 1213-1239.
https://doi.org/10.1016/S0094-114X(02)00045-9
[30]  Dubowsky, S. and Freudenstein, F. (1971) Dynamic Analysis of Mechanical Systems with Clearances Part 1: Formation of Dynamic Model. Journal of Engineering for Industry, 93, 305-309.
https://doi.org/10.1115/1.3427895
[31]  Goldsmith, W. (2001) Book on the Impact: The Theory and Physical Behaviour of Colliding Solids. Dover Publications, Mineola, 416 p.
[32]  Di Maio, F.P. and Di Renzo, A. (2004) Analytical Solution for the Problem of Friction Al-Elastic Collisions of Spherical Particles Using the Linear Model. Chemical Engineering Science, 59, 3461-3475.
https://doi.org/10.1016/j.ces.2004.05.014
[33]  Suryanarayana, C. (2001) Mechanical Alloying and Milling. Progress in Materials Science, 46, 1-184.
https://doi.org/10.1016/S0079-6425(99)00010-9
[34]  Zeng, Y., Jia, F., Meng, X., Han, Y. and Xiao, Y. (2018) The Effects of Friction Characteristic of Particle on Milling Process in a Horizontal Rice Mill. Advanced Powder Technology, 29, 1280-1291.
https://doi.org/10.1016/j.apt.2018.02.021

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413