The private quantum channel (PQC) maps any quantum state to the maximally mixed state for the discrete as well as the bosonic Gaussian quantum systems, and it has fundamental meaning on the quantum cryptographic tasks and the quantum channel capacity problems. In this paper, we primally introduce a notion of approximate private quantum channel (ε-PQC) on fermionic Gaussian systems (i.e., ε-FPQC), and construct its explicit form of the fermionic (Gaussian) private quantum channel. First of all, we suggest a general structure for ε-FPQC on the fermionic Gaussian systems with respect to the Schatten p-norm class, and then we give an explicit proof of the statement in the trace norm case. In addition, we study that the cardinality of a set of fermionic unitary operators agrees on the ε-FPQC condition in the trace norm case. This result may give birth to intuition on the construction of emerging fermionic Gaussian quantum communication or computing systems.
References
[1]
Hayashi, M. (2016) Quantum Information Theory: Mathematical Foundation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49725-8
[2]
Wilde, M.M. (2017) Quantum Information Theory. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781316809976
[3]
Watrous, J. (2018) The Theory of Quantum Information. Cambridge University Press, Cambridge.
[4]
Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., and Lloyd, S. (2012) Gaussian Quantum Information. Reviews of Modern Physics, 84, 621. https://doi.org/10.1103/RevModPhys.84.621
[5]
Bravyi, S. (2005) Classical Capacity of Fermionic Product Channels.
https://arxiv.org/abs/quant-ph/0507282
[6]
Spee, C., Schwaiger, K., Giedke, G. and Kraus, B. (2018) Mode Entanglement of Gaussian Fermionic States. Physical Review A, 97, Article ID: 042325.
https://doi.org/10.1103/PhysRevA.97.042325
[7]
Friss, N., Lee, A.R. and Bruschi, D.E. (2013) Fermionic-Mode Entanglement in Quantum Information. Physical Review A, 87, Article ID: 022338.
https://doi.org/10.1103/PhysRevA.87.022338
[8]
Gluza, M., Kliesch, M., Eisert, J. and Aolita, L. (2018) Fidelity Witnesses for Fermionic Quantum Simulations. Physical Review Letters, 120, Article ID: 190501.
https://doi.org/10.1103/PhysRevLett.120.190501
[9]
Lugli, M., Perinotti, P. and Tosini, A. (2020) Fermionic State Discrimination by Local Operations and Classical Communication. Physical Review Letters, 125, Article ID: 110403. https://doi.org/10.1103/PhysRevLett.125.110403
[10]
Hastings, M.B. (2009) Superadditivity of Communication Capacity Using Entangled Inputs. Nature Physics, 5, 255-257. https://doi.org/10.1038/nphys1224
[11]
Hayden, P. and Winter, A. (2008) Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for All p >1. Communications in Mathematical Physics, 284, 263-280. https://doi.org/10.1007/s00220-008-0624-0
[12]
Ambainis, A., Mosca, M., Tapp, A. and de Wolf, R. (2000) Private Quantum Channels. Proceedings 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, 12-14 November 2000, 547-553.
[13]
Nagaj, D. and Kerenidis, I. (2006) On the Optimality of Quantum Encryption Schemes. Journal of Mathematical Physics, 47, Article ID: 092102.
https://doi.org/10.1063/1.2339014
[14]
Bouda, J. and Ziman, M. (2007) Optimality of Private Quantum Channels. Journal of Physics A: Mathematical and Theoretical, 40, 5415.
https://doi.org/10.1088/1751-8113/40/20/011
[15]
Cai, N., Winter, A. and Yeung, R.W. (2004) Quantum Privacy and Quantum Wiretap Channels. Problems of Information Transmission. 40, 318-336.
https://doi.org/10.1007/s11122-005-0002-x
[16]
Devetak, I. (2005) The Private Classical Capacity and Quantum Capacity of a Quantum Channel. IEEE Transactions on Information Theory, 51, 44-55.
https://doi.org/10.1109/TIT.2004.839515
[17]
Hayashi, M. (2015) Quantum Wiretap Channel With Non-Uniform Random Number and Its Exponent and Equivocation Rate of Leaked Information. IEEE Transactions on Information Theory, 61, 559-5622.
https://doi.org/10.1109/TIT.2015.2464215
[18]
Hayden, P., Leung, D., Shor, P.W. and Winter, A. (2004) Randomizing Quantum States: Constructions and Applications. Communications in Mathematical Physics, 250, 371. https://doi.org/10.1007/s00220-004-1087-6
[19]
Aubrun, G. (2009) On Almost Randomizing Channels with a Short Kraus Decomposition. Communications in Mathematical Physics, 288, 1103-1116.
https://doi.org/10.1007/s00220-008-0695-y
[20]
Jeong, K. (2012) Randomizing Channels in Quantum Information Theory. PhD Thesis, Seoul National University, Seoul.
[21]
Jeong, K. (2014) Randomizing Quantum States to Shatten p-Norm for All p ≥1. AIP Conference Proceedings, 1633, 171. https://doi.org/10.1063/1.4903127
[22]
Ambainis, A. and Smith, A. (2004) Small Pseudo-Random Families of Matrices: Derandomizing Approximate Quantum Encryption. Proceedings of 7th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems 8th International Workshop on Randomization and Computation, Cambridge, 22-24 August 2004, 249-260. https://doi.org/10.1007/978-3-540-27821-4_23
[23]
Dickinson, P.A. and Nayak, A. (2006) Approximate Randomization of Quantum States with Fewer Bits of Key. AIP Conference Proceedings, 864, 18.
https://doi.org/10.1063/1.2400876
[24]
Brádler, K. (2005) Continuous-Variable Private Quantum Channel. physical review A, 72, Article ID: 042313. https://doi.org/10.1103/PhysRevA.72.042313
[25]
Jeong, K., Kim, J. and Lee, S.-Y. (2015) Gaussian Private Quantum Channel with Squeezed Coherent States. Scientific Reports, 5, Article No. 13974.
https://doi.org/10.1038/srep13974
[26]
Wu, Y., Cai, R., He, G. and Zhang, J. (2014) Quantum Secret Sharing with Continuous Variable Graph State. Quantum Information Processing, 13, 1085-1102.
https://doi.org/10.1007/s11128-013-0713-7
[27]
Bouda, J., Sedlák, M. and Ziman, M. (2020) Private Quantum Channels for Multi-Photon Pulses and Unitary k-Designs. arXiv: 2009.06067.
https://arxiv.org/abs/2009.06067
[28]
Chi, D.P. and Jeong, K. (2014) Approximate Quantum State Sharings via Pair of Private Quantum Channels. Journal of Quantum Information Science, 4, 64-70.
http://dx.doi.org/10.4236/jqis.2014.41006
[29]
Jeong, K. and Kim, J. (2015) Secure Sequential Transmission of Quantum Information. Quantum Information Processing, 14, 3523-3531.
https://doi.org/10.1007/s11128-015-1054-5
[30]
Hebenstreit, M., Jozsa, R., Kraus, B., Strelchuk, S. and Yoganathan, M. (2019) All Pure Fermionic Non-Gaussian States Are Magic States for Matchgate Computations. Physical Review Letters, 123, Article ID: 080503.
https://doi.org/10.1103/PhysRevLett.123.080503
[31]
Li, C.-K., Nakahara, M., Poon, Y.-T., Sze, N.-S. and Tomita, H. (2011) Efficient Quantum Error Correction for Fully Correlated Noise. Physics Letters A, 375, 3255-3258.
https://doi.org/10.1016/j.physleta.2011.07.027
[32]
Jeong, K. and Lim, Y. (2016) Purification of Gaussian Maximally Mixed States. Physics Letters A, 380, 3607-3611. https://doi.org/10.1016/j.physleta.2016.09.001
[33]
Lim, Y., Kim, J., Lee, S. and Jeong, K. (2019) Maximally Entangled States in Discrete and Gaussian Regimes. Quantum Information Processing, 18, Article No. 43.
https://doi.org/10.1007/s11128-018-2160-y
[34]
Hughston, L.P., Jozsa, R. and Wootter, W.K. (1993) A Complete Classification of Quantum Ensembles Having a Given Density Matrix. Physics Letters A, 183, 14-18.
https://doi.org/10.1016/0375-9601(93)90880-9
[35]
Levy, P. (1951) Problèmes Concrets d’Analyse Fonctionnelle. Gauthier-Villars, Paris.
[36]
McDiarmid, C. (1989) On the Method of Bounded Differences. Surveys in Combinatorics, 1989, 141, 148-188.
https://doi.org/10.1017/CBO9781107359949.008
[37]
Di Tullio, M., Rossignoli, R., Cerezo, M. and Gigena, N. (2019) Fermionic Entanglement in the Lipkin Model. Physical Review A, 100, Article ID: 062104.
https://doi.org/10.1103/PhysRevA.100.062104