We study the behavior of quantum Fisher information for a qubit probe that is interacting with a squeezed thermal environment. We analyzed the effect of squeezing parameters on the dynamics of quantum Fisher information which affects the optimal precision of the estimation parameter. We show that the squeezed field may offer a significant role in the precise measurement of the parameter cut-off frequency which is linked to the environment correlation time. Our results may be useful in quantum metrology, communication, and quantum estimation processes.
References
[1]
Helstron, C.W. (1976) Quantum Detection and Estimation Theory. Academic, New York.
Javed, M., Khan, S. and Ullah, S.A. (2018) Characterization of Classical Static Noise via Qubit as Probe. Quantum Information Processing, 17, 53.
https://doi.org/10.1007/s11128-018-1817-x
[4]
Paris, M.G.A. (2014) Quantum Probes for Fractional Gaussian Processes. Physica A, 413, 256-265. https://doi.org/10.1016/j.physa.2014.06.052
[5]
Benedetti, C. and Paris, M.G.A. (2014) Characterization of Classical Gaussian Processes Using Quantum Probes. Physics Letters A, 378, 2495-2500.
https://doi.org/10.1016/j.physleta.2014.06.043
[6]
Liu, J. and Yuan, H.D. (2017) Control-Enhanced Multiparameter Quantum Estimation. Physical Review A, 96, Article ID: 042114.
https://doi.org/10.1103/PhysRevA.96.042114
[7]
Braustein, S.L. and Caves, C.M. (1994) Statistical Distance and the Geometry of Quantum States. Physical Review Letters, 72, 3439.
https://doi.org/10.1103/PhysRevLett.72.3439
[8]
Luo, S. (2000) Quantum Fisher Information and Uncertainty Relations. Letters in Mathematical Physics, 53, 243-251. https://doi.org/10.1023/A:1011080128419
[9]
Giblisco, P., Imparato, D. and Isola, T. (2007) Uncertainty Principle and Quantum Fisher Information. Journal of Mathematical Physics, 48, Article ID: 072109.
https://doi.org/10.1063/1.2748210
[10]
Taddei, M.M., Escher, B.M., Davidovich, L. and de Mtos Filho, R.L. (2013) Quantum Speed Limit for Physical Processes. Physical Review Letters, 110, Article ID: 050402. https://doi.org/10.1103/PhysRevLett.110.050402
[11]
Invernizzi, C., Korbman, M., Venuti, L.C. and Paris, M.G.A. (2008) Quantum Criticality as a Resource for Quantum Estimation. Physical Review A, 78, Article ID: 042105. https://doi.org/10.1103/PhysRevA.78.042105
[12]
Boixo, S. and Monaras, A. (2008) Precision Measurement of Neutrino Oscillation Parameters with Kam-LAND. Physical Review Letters, 100, Article ID: 221803.
https://doi.org/10.1103/PhysRevLett.100.221803
[13]
Razavian, S., Benedetti, C., Bina, M., Akbari, Y. and Paris, M.G.A. (2019) Quantum Thermometry by Single-Qubit Dephasing. European Physical Journal Plus, 134, 284.
https://doi.org/10.1140/epjp/i2019-12708-9
[14]
Benedetti, C., Sehdaran, F.S., Zandi, M.H. and Paris, M.G.A. (2018) Two-Qubit Quantum Probes for the Temperature of an Ohmic Environment. Physical Review A, 97, Article ID: 012126. https://doi.org/10.1103/PhysRevA.97.012126
[15]
Braunstein, S.L. and Carlton, M.C. (1994) Statistical Distance and the Geometry of Quantum States. Physical Review Letters, 72, 3439.
https://doi.org/10.1103/PhysRevLett.72.3439
[16]
Breuer, H.P. and Petroccione, F. (2002) The Theory of Open Quantum Systems. Oxford University Press, Oxford.
[17]
Kolodyynski, J. and Demkowicz-Dobrzanski, R. (2010) Phase Estimation without a Priori Phase Knowledge in the Presence of Loss. Physical Review A, 82, Article ID: 053804. https://doi.org/10.1103/PhysRevA.82.053804
[18]
Ma, J., Huang, Y.X., Wang, X. and Sun, C.P. (2011) Quantum Fisher Information of the Greenberger-Horne-Zeilinger State in Decoherence Channels. Physical Review A, 84, Article ID: 022302. https://doi.org/10.1103/PhysRevA.84.022302
[19]
Berrada, K., Abdel-Khalek, S. and Obada, A.S. (2012) Quantum Fisher Information for a Qubit System Placed inside a Dissipative Cavity. Physics Letters A, 376, 1412-1416.
https://doi.org/10.1016/j.physleta.2012.03.023
[20]
Zhang, Y.M., Li, X.Y., Yang, W. and Jin, G.R. (2013) Quantum Fisher Information of Entangled Coherent States in the Presence of Photon Loss. Physical Review A, 88, Article ID: 043832. https://doi.org/10.1103/PhysRevA.88.043832
[21]
Li, Y.L., Xiao, X. and Yao, Y. (2015) Classical-Driving-Enhanced Parameter-Estimation Precision of a Non-Markovian Dissipative Two-State System. Physical Review A, 91, Article ID: 052105. https://doi.org/10.1103/PhysRevA.91.052105
[22]
Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L. and Xie, Y.M. (2016) Enhancing Teleportation of Quantum Fisher Information by Partial Measurements. Physical Review A, 93, Article ID: 012307. https://doi.org/10.1103/PhysRevA.93.012307
[23]
Pan, F., Qiu, L. and Liu, Z. (2017) The Complementarity Relations of Quantum Coherence in Quantum Information Processing. Scientific Reports, 7, Article No. 43919. https://doi.org/10.1038/srep43919
[24]
Tan, Q.-S., Huang, Y., Yin, X., Kuang, L. and Wang, X. (2013) Enhancement of Parameter Estimation Precision in Noisy Systems by Dynamical Decoupling Pulses. Physical Review A, 87, Article ID: 032102.
https://doi.org/10.1103/PhysRevA.87.032102
[25]
You, Y.-N. and Li, S.-N. (2018) Entropy Dynamics of a Dephasing Model in a Squeezed Thermal Bath. Physical Review A, 97, Article ID: 012114.
https://doi.org/10.1103/PhysRevA.97.012114
[26]
May, V. and Kluhn, O. (2000) Charge and Energy Transfer Dynamics in Molecular Systems: A Theoretical Introduction. Wiley-VCH, Berlin.
[27]
Dong, H., Wang, D.-W. and Kim, M.B. (2017) How Isolated Is Enough for an “Isolated” System in Statistical Mechanics?
[28]
Agarwal, G.S. (2012) Quantum Optics. Cambridge University Press, Cambridge.
[29]
Schaller, G. (2014) Open Quantum Systems Far from Equilibrium. Springer, New York. https://doi.org/10.1007/978-3-319-03877-3
[30]
Banerjee, S. and Ghosh, R. (2007) Dynamics of Decoherence without Dissipation in a Squeezed Thermal Bath. Journal of Physics A: Mathematical and Theoretical, 40, 13735. https://doi.org/10.1088/1751-8113/40/45/014
[31]
Zhong, W., Sun, Z., Ma, J., Wang, X.G. and Nori, F. (2013) Fisher Information under Decoherence in Bloch Representation. Physical Review A, 87, Article ID: 022337.
https://doi.org/10.1103/PhysRevA.87.022337
[32]
Benedetti, C., Sehdaran, F.S., Zandi, M.H. and Paris, M.G.A. (2018) Quantum Probes for the Cutoff Frequency of Ohmic Environments. Physical Review A, 97, Article ID: 012126. https://doi.org/10.1103/PhysRevA.97.012126
[33]
Song, H., Luo, S. and Hong, Y. (2015) Quantum Criticality from Fisher Information. Physical Review A, 91, Article ID: 042110.
https://doi.org/10.1103/PhysRevA.91.042110
[34]
Zheng, Q., Ge, L., Yao, Y. and Zhi, Q. (2015) Enhancing Parameter Precision of Optimal Quantum Estimation by Direct Quantum Feedback. Physical Review A, 91, Article ID: 033805. https://doi.org/10.1103/PhysRevA.91.033805
[35]
Bennett, C.H., Bernstein, H.J., Popescu, S. and Schumacher, B. (1996) Concentrating Partial Entanglement by Local Operations. Physical Review A, 53, 2046-2052.
https://doi.org/10.1103/PhysRevA.53.2046
[36]
Pennini, F. and Plastino, A. (2004) Escort Husimi Distributions Fisher Information and Nonextensivity. Physics Letters A, 326, 20-26.
https://doi.org/10.1016/j.physleta.2004.04.024