全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

腺苷调节小胶质细胞极化改善精神分裂症的研究进展
Research Progress of Adenosine Can Improve Schizophrenia via Regulating Microglia Polarization

DOI: 10.12677/IJPN.2021.101001, PP. 1-6

Keywords: 小胶质细胞,神经炎症,髓鞘修复,腺苷,精神分裂症
Microglia
, Neuroinflammation, Myelin Restoration, Adenosine, Schizophrenia

Full-Text   Cite this paper   Add to My Lib

Abstract:

小胶质细胞作为神经炎症的初始细胞,在中枢神经系统(central nervous system, CNS)免疫中占有重要地位。腺苷是CNS中的重要调节物质,可通过与小胶质细胞中的受体结合发挥作用。有研究表明,小胶质细胞与腺苷结合改变表型,有助于修复损伤的髓鞘,拮抗精神病样症状。本文主要综述腺苷特性、相关分类、小胶质细胞的特性、表型、相关炎症因子以及其与精神分裂症髓鞘修复相关方面的研究进展。为以“小胶质细胞表型”为靶点,开发腺苷系统的新型药物治疗精神分裂症提供参考。
Microglia cells, as the initial cells of neuroinflammation, play an important role in central nervous System (CNS) immunity. Adenosine is an important regulator in CNS, which can play its role by binding to receptors in microglia cells. Studies have shown that the phenotype of microglia cells can be changed by binding to adenosine, which contribute to rebuilding damaged myelin sheath and antagonizing psychotic symptoms. This article made a systemic review on adenosine, including characteristics and classification, and microglia, including characteristics, phenotype, inflammatory cytokines and the relationship between microglia and myelin repair in schizophrenia. This review will greatly enhance our understanding in the pathophysiology of schizophrenia and thus provide new insight into searching for new targets and medications in treating schizophrenia.

References

[1]  Gouvêa-Junqueira, D., Falvella, A.C.B., Antunes, A.S.L.M., Seabra, G., Brand?o-Teles, C., Martins-de-Souza, D., et al. (2020) Novel Treatment Strategies Targeting Myelin and Oligodendrocyte Dysfunction in Schizophrenia. Front Psychia-try, 11, 379.
https://doi.org/10.3389/fpsyt.2020.00379
[2]  Wylot, B., Mieczkowski, J., Niedziolka, S., Niedziolka, S., Kaminska, B. and Zawadzka, M. (2019) Csf1 Deficiency Dysregulates Glial Responses to Demyelination and Dis-turbs CNS White Matter Remyelination. Cells, 9, 99.
https://doi.org/10.3390/cells9010099
[3]  Orihuela, R., McPherson, C.A. and Harry, G.J. (2016) Microglial M1/M2 Polarization and Metabolic States. British Journal of Pharmacology, 173, 649-665.
https://doi.org/10.1111/bph.13139
[4]  Yang, X., Xu, S., Qian, Y.and Xiao, Q. (2017) Resveratrol Regulates Mi-croglia M1/M2 Polarization via PGC-1α in Conditions of Neuroinflammatory Injury. Brain, Behavior, and Immunity, 64, 162-172.
https://doi.org/10.1016/j.bbi.2017.03.003
[5]  Kolosowska, N., Keuters, M.H., Wojciechowski, S., Keksa-Goldsteine, V., Laine, M., Malm, T., et al. (2019) Peripheral Administration of IL-13 Induces Anti-inflammatory Microglial/Macrophage Responses and Provides Neuroprotection in Ischemic Stroke. Neurotherapeutics, 16, 1304-1319.
https://doi.org/10.1007/s13311-019-00761-0
[6]  Shamim, D. and Laskowski, M. (2017) Inhibition of Inflamma-tion Mediated Through the Tumor Necrosis Factor α Biochemical Pathway Can Lead to Favorable Outcomes in Alz-heimer Disease. Journal of Central Nervous System Disease, 9, Article ID: 1179573517722512.
https://doi.org/10.1177/1179573517722512
[7]  Bodhankar, S., Lapato, A., Chen, Y., Vandenbark, A.A., Saugstad, J. and Offner, H. (2015) Role for Microglia in Sex Differences after Ischemic Stroke: Importance of M2. Met-abolic Brain Disease, 30, 1515-1529.
https://doi.org/10.1007/s11011-015-9714-9
[8]  Müller, N. (2018) Inflammation in Schizophrenia: Pathogenetic Aspects and Therapeutic Considerations. Schizophrenia Bulletin, 44, 973-982.
https://doi.org/10.1093/schbul/sby024
[9]  Laskaris, L.E., Di Biase, M.A., Everall, I., Chana, G., Christopoulos, A., Skafidas, E., et al. (2016) Microglial Activation and Progressive Brain Changes in Schizophrenia. British Journal of Pharmacology, 173, 666-680.
https://doi.org/10.1111/bph.13364
[10]  Gingele, S., Merkel, L., Prajeeth, C.K., Kronenberg, J., von Hoevel, F.F., Skripuletz, T., et al. (2019) Polarized Microglia Do Not Influence Oligodendrocyte Lineage cells via Astrocytes. Interna-tional Journal of Developmental Neuroscience, 77, 39-47.
https://doi.org/10.1016/j.ijdevneu.2019.01.006
[11]  Jamwal, S., Mittal, A.,,Kumar, P., Alhayani, D.M. and Al-Aboudi, A. (2019) Therapeutic Potential of Agonists and Antagonists of A1, A2a, A2b and A3 Adenosine Receptors. Current Pharmaceutical Design, 25, 2892-2905.
https://doi.org/10.2174/1381612825666190716112319
[12]  Choudhury, H., Chellappan, D.K., Sengupta, P., Pandey, M. and Gorain, B. (2019) Adenosine Receptors in Modulation of Central Nervous System Disorders. Current Pharmaceutical Design, 25, 2808-2827.
https://doi.org/10.2174/1381612825666190712181955
[13]  Cunha, R.A. (2016) How Does Adenosine Control Neuronal Dysfunction and Neurodegeneration? Journal of Neurochemistry, 139, 1019-1055.
https://doi.org/10.1111/jnc.13724
[14]  Calovi, S., Mut-Arbona, P. and Sperlágh, B. (2019) Microglia and the Pu-rinergic Signaling System. Neuroscience, 405, 137-147.
https://doi.org/10.1016/j.neuroscience.2018.12.021
[15]  Zhang, J., Yang, L., Fang, Z., Kong, J., Huang, Q. and Xu, H. (2018) Adenosine Promotes the Recovery of Mice from the Cuprizone-Induced Behavioral and Morphological Changes while Effecting on Microglia and Inflammatory Cytokines in the Brain. Journal of Neuroimmune Pharmacology, 13, 412-425.
https://doi.org/10.1007/s11481-018-9799-0

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413