全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Energy Conservation in the Thin Layer Approximation: IV. The Light Curve for Supernovae

DOI: 10.4236/ijaa.2021.111003, PP. 37-58

Keywords: Supernovae: General, Supernovae: (Individual: SN1993j), Gamma-Ray Burst: (Individual: GRB 050814), Gamma-Ray Burst: (Individual: GRB 060729)

Full-Text   Cite this paper   Add to My Lib

Abstract:

The light curves (LC) for Supernova (SN) can be modeled adopting the conversion of the flux of kinetic energy into radiation. This conversion requires an analytical or a numerical law of motion for the expanding radius of the SN. In the framework of conservation of energy for the thin layer approximation, we present a classical trajectory based on a power law profile for the density, a relativistic trajectory based on the Navarro-Frenk-White profile for the density, and a relativistic trajectory based on a power law behaviour for the swept mass. A detailed simulation of the LC requires the evaluation of the optical depth as a function of time. We modeled the LC of SN 1993J in different astronomical bands, the LC of GRB 050814 and the LC GRB 060729 in the keV region. The time dependence of the magnetic field of equipartition is derived from the theoretical formula for the luminosity.

References

[1]  Dimitriadis, G., Foley, R.J., Rest, A., et al. (2019) K2 Observations of SN 2018oh Reveal a Two-Component Rising Light Curve for a Type Ia Supernova. ApJ Letters, 870, L1.
[2]  Palliyaguru, N.T., Corsi, A., Frail, D.A., et al. (2019) The Double-Peaked Radio Light Curve of Supernova PTF11qcj. Astrophysical Journal, 872, Article No. 201.
https://doi.org/10.3847/1538-4357/aaf64d
[3]  Papadogiannakis, S., Goobar, A., Amanullah, R., et al. (2019) R-Band Light-Curve Properties of Type Ia Supernovae from the (Intermediate) Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 483, 5045-5076.
https://doi.org/10.1093/mnras/sty3301
[4]  Wang, S.Q., Cano, Z., Li, L., et al. (2019) Modeling the Light Curves of the Luminous Type Ic Supernova 2007D. Astrophysical Journal, 877, 20.
https://doi.org/10.3847/1538-4357/ab1903
[5]  Ricks, W. and Dwarkadas, V.V. (2019) Excavating the Explosion and Progenitor Properties of Type IIP Supernovae via Modeling of Their Optical Light Curves. Astrophysical Journal, 880, 59.
https://doi.org/10.3847/1538-4357/ab287c
[6]  Tsuna, D., Kashiyama, K., Shigeyama, T., et al. (2019) Type IIn Supernova Light Curves Powered by Forward and Reverse Shocks. Astrophysical Journal, 884, 87.
https://doi.org/10.3847/1538-4357/ab40ba
[7]  Kushnir, D. and Waxman, E. (2020) Constraints on the Density Distribution of Type Ia Supernovae Ejecta Inferred from Late-Time Light-Curve Flattening. Monthly Notices of the Royal Astronomical Society, 493, 5617.
https://doi.org/10.1093/mnras/staa690
[8]  Koo, H., Shafieloo, A., Keeley, R.E., et al. (2020) Model-Independent Constraints on Type Ia Supernova Light-Curve Hyperparameters and Reconstructions of the Expansion History of the Universe. Astrophysical Journal, 899, 9.
https://doi.org/10.3847/1538-4357/ab9c9a
[9]  Wang, S.Q. and Li, L. (2020) Exploring the Energy Sources Powering the Light Curve of the Type Ibn Supernova PS15dpn and the Mass-Loss History of the SN Progenitor. Astrophysical Journal, 900, 83.
https://doi.org/10.3847/1538-4357/aba6e9
[10]  Marcaide, J.M., Mart-Vidal, I., Alberdi, A. and Pérez-Torres, M.A. (2009) A Decade of SN 1993J: Discovery of Radio Wavelength Effects in the Expansion Rate. A&A, 505, 927.
https://doi.org/10.1051/0004-6361/200912133
[11]  Zaninetti, L. (2014) The Physics of the Optical Light Curve in Supernovae. Applied Physics Research, 6, 118.
https://doi.org/10.5539/apr.v6n2p118
[12]  Zhang, T., Wang, X., Zhou, X., Li, W., Ma, J., Jiang, Z. and Li, Z. (2004) Optical Photometry of SN 1993J: 1995 to 2003. The Astronomical Journal, 128, 1857.
https://doi.org/10.1086/423699
[13]  Benson, P.J., Herbst, W., Salzer, J.J., Vinton, G., Hanson, G.J., Ratcliff, S.J., Winkler, P.F., Elmegreen, D.M., Chromey, F., Strom, C., Balonek, T.J. and Elmegreen, B.G. (1994) Light Curves of SN 1993J from the Keck Northeast Astronomy Consortium. The Astronomical Journal, 107, 1453.
https://doi.org/10.1086/116958
[14]  Chandra, P., Dwarkadas, V.V., Ray, A., Immler, S. and Pooley, D. (2009) X-Rays from the Explosion Site: 15 Years of Light Curves of SN 1993J. Astrophysical Journal, 699, 388.
https://doi.org/10.1088/0004-637X/699/1/388
[15]  Pooley, G.G. and Green, D.A. (1993) Ryle Telescope Observations of Supernova 1993J at 15-GHZ—The First 115 Days. Monthly Notices of the Royal Astronomical Society, 264, L17.
https://doi.org/10.1093/mnras/264.1.L17
[16]  Jakobsson, P., Levan, A. and Fynbo, J.P. (2006) A Mean Redshift of 2.8 for Swift Gamma-Ray Bursts. A & A, 447, 897.
https://doi.org/10.1051/0004-6361:20054287
[17]  Cano, Z., Bersier, D., Guidorzi, C., et al. (2011) A Tale of Two GRB-SNe at a Common Redshift of . Monthly Notices of the Royal Astronomical Society, 413, 669.
[18]  Nagy, A.P., Ordasi, A., Vinkó, J. and Wheeler, J.C. (2014) A Semianalytical Light Curve Model and Its Application to Type IIP Supernovae. A & A, 571, A77.
https://doi.org/10.1051/0004-6361/201424237
[19]  Zaninetti, L. (2015) Relativistic Scaling Laws for the Light Curve in Supernovae. Applied Physics Research, 6, 48.
https://doi.org/10.5539/apr.v7n3p48
[20]  Longair, M.S. (2011) High Energy Astrophysics III. Cambridge University Press, Cambridge.
[21]  Pacholczyk, A.G. (1970) Radio Astrophysics. Nonthermal Processes in Galactic and Extragalactic Sources. Freeman, San Francisco.
[22]  Rybicki, G. and Lightman, A. (1991) Radiative Processes in Astrophysics. Wiley Interscience, New York.
[23]  Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes in FORTRAN. The Art of Scientific Computing. Cambridge University Press, Cambridge.
[24]  Zaninetti, L. (2020) Energy Conservation in the Thin Layer Approximation: I. The Spherical Classic Case for Supernovae Remnants. International Journal of Astronomy and Astrophysics, 10, 71.
https://doi.org/10.4236/ijaa.2020.102006
[25]  Zaninetti, L. (2020) Energy Conservation in the Thin Layer Approximation: III. The Spherical Relativistic Case for Supernovae. International Journal of Astronomy and Astrophysics, 10, 285-301.
[26]  Navarro, J.F., Frenk, C.S. and White, S.D.M. (1996) The Structure of Cold Dark Matter Halos. Astrophysical Journal, 462, 563.
https://doi.org/10.1086/177173
[27]  Condon, J.J. and Ransom, S.M. (2016) Essential Radio Astronomy. Princeton University Press, Princeton.
https://doi.org/10.1515/9781400881161
[28]  Lang, K.R. (1999) Astrophysical Formulae. Third Edition, Springer, New York.
[29]  Fermi, E. (1949) On the Origin of the Cosmic Radiation. Physical Review, 75, 1169.
https://doi.org/10.1103/PhysRev.75.1169
[30]  Fermi, E. (1954) Galactic Magnetic Fields and the Origin of Cosmic Radiation. Astrophysical Journal, 119, 1.
https://doi.org/10.1086/145789
[31]  Zaninetti, L. (2011) Time-Dependent Models for a Decade of SN 1993J. Astrophysics and Space Science, 333, 99.
https://doi.org/10.1007/s10509-011-0609-x
[32]  Zaninetti, L. (2014) A Classical and a Relativistic Law of Motion for Spherical Supernovae. Astrophysical Journal, 795, 80.
https://doi.org/10.1088/0004-637X/795/1/80

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413