全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Wideband Reconfigurable Millimeter-Wave Linear Array Antenna Using Liquid Crystal for 5G Networks

DOI: 10.4236/wet.2021.121001, PP. 1-14

Keywords: 5G Networks, Liquid Antenna, Liquid Crystal, Frequency Reconfigurability, Antenna Array, Millimeter-Wave

Full-Text   Cite this paper   Add to My Lib

Abstract:

The advanced design of a 10 × 1 linear antenna array system with the capa-bility of frequency tunability using GT3-23001 liquid crystal (LC) is pro-posed. The design for this reconfigurable wideband antenna array for 5G ap-plications at Ka-band millimeter-wave (mmw) consists of a double layer of stacked patch antenna with aperture coupled feeding. The bias voltage over LC varies from 0 V to 10.6 V to achieve a frequency tunability of 1.18 GHz. The array operates from 25.3 GHz to 33.8 GHz with a peak gain of 19.2 dB and a beamwidth of 5.2° at 30 GHz. The proposed reconfigurable antenna ar-ray represents a real and efficient solution for the recent and future mmw 5G networks. The proposed antenna is suitable for 5G base stations in stadiums, malls and convention centers. It is proper for satellite communications and radars at mmw.

References

[1]  Deckmyn, T., Agneessens, S., Reniers, A.C.F., Smolders, A.B., Cauwe, M., Ginste, D.V. amd Rogier, H. (2017) A Novel 60 GHz Wide-Band Coupled Half-Mode/ Quarter-Mode Substrate Integrated Waveguide Antenna Title. IEEE Transactions on Antennas and Propagation, 65, 6915-6926.
https://doi.org/10.1109/TAP.2017.2760360
[2]  Jilani, S.F., Member, S., Munoz, M.O. and Abbasi, Q.H. (2017) Millimeter-Wave Liquid Crystal Polymer Based Conformal Antenna Array for 5G Applications. IEEE Antennas and Wireless Propagation Letters, 18, 84-88.
[3]  Rappaport, T.S., et al. (2017) Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models. IEEE Transactions on Antennas and Propagation, 65, 6213-6230.
https://doi.org/10.1109/TAP.2017.2734243
[4]  Hong, W. (2017) Solving the 5G Mobile Antenna Puzzle: Assessing Future Directions for the 5G Mobile Antenna Paradigm Shift. IEEE Microwave Magazine, 18, 86-102. https://doi.org/10.1109/MMM.2017.2740538
[5]  Yashchyshyn, Y., Member, S., Derzakowski, K., Bogdan, G., Member, S., Godziszewski, K., Nyzovets, D., Member, S., Kim, C.H. and Park, B. (2018) 28 GHz Switched-Beam Antenna Based on S-PIN Diodes for 5G Mobile Communications. IEEE Antennas and Wireless Propagation Letters, 17, 2018-2021.
https://doi.org/10.1109/LAWP.2017.2781262
[6]  Ouyang, W. and Gong, X. (2018) A Frequency-Reconfigurable Cavity-Backed Slot Antenna ESPAR in H Plane. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, 8-13 July 2018, Vol. 6006, 1917-1918.
https://doi.org/10.1109/APUSNCURSINRSM.2018.8609292
[7]  Choi, J., Park, J., Youn, Y., Hwang, W. and Hong, W. (2019) Frequency-Reconfigurable mm Wave Antenna Loaded with Capacitive Structure Integrated within a Microstrip Line. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, 7-12 July 2019, 455-456.
https://doi.org/10.1109/APUSNCURSINRSM.2019.8888846
[8]  Jilani, S.F., Abbas, S.M., Esselle, K.P. and Alomainy, A. (2015) Millimeter-Wave Frequency Reconfigurable T-Shaped Antenna for 5G Networks. IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Abu Dhabi, 19-21 October 2015, 100-102.
https://doi.org/10.1109/WiMOB.2015.7347946
[9]  Agarwal, P., Ali, S.N. and Heo, D. (2017) Reconfigurable Phased-Array Design Techniques for 5G and Beyond Communications. IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Seoul, 30 August-1 September 2017, 53-55. https://doi.org/10.1109/RFIT.2017.8048287
[10]  Yi, Y., Yong, C., King Yuk, C., Ramer, R. and Guo, Y.J. (2011) MEMS-Loaded Millimeter Wave Frequency Reconfigurable Quasi-Yagi Dipole Antenna. Asia-Pacific Microwave Conference, Melbourne, 1318-1321.
[11]  Perez-Palomino, G., Encinar, J.A., Barba, M., Cahill, R., Dickie, R. and Baine, P. (2018) Millimeter-Wave Beam Scanning Antennas Using Liquid Crystals. 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, 4.
[12]  Barbin, S., da Costa, I., Cerqiera Sodre Junior, A., Spadoti, D., da Silva, L.G. and Ribeiro, J.A. (2017) Optically Controlled Reconfigurable Antenna Array for mm-Wave Applications. IEEE Antennas and Wireless Propagation Letters, 16, 2142-2145. https://doi.org/10.1109/LAWP.2017.2700284
[13]  Maune, H., Jost, M., Reese, R., Polat, E. and Nickel, M. (2018) Microwave Liquid Crystal Technology. Crystals, 8, 355.
https://doi.org/10.3390/cryst8090355
[14]  Langley, R.J. and Liu, L. (2008) Liquid Crystal Tunable Microstrip Patch Antenna. Electronics Letters, 44, 1179-1180.
https://doi.org/10.1049/el:20081995
[15]  Fritzsch, C., Bildik, S. and Jakoby, R. (2012) Ka-Band Frequency Tunable Patch Antenna. Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, Chicago, 8-14 July 2012, 1-2.
https://doi.org/10.1109/APS.2012.6348462
[16]  Oliver, D.R. and Schaub, D.E. (2011) A Circular Patch Resonator for the Measurement of Microwave Permittivity of Nematic Liquid Crystal. IEEE Transactions on Microwave Theory and Techniques, 59, 1855-1862.
https://doi.org/10.1109/TMTT.2011.2142190
[17]  Goelden, F., Gaebler, A., Karabey, O., Goebel, M., Manabe, A. and Jakoby, R. (2010) Tunable Band-Pass Filter Based on Liquid Crystal. German Microwave Conference Digest of Papers, Berlin, 15-17 March 2010, 98-101.
[18]  Weil, C., Luessem, G. and Jakoby, R. (2002) Tunable Inverted-Microstrip Phase Shifter Device Using Nematic Liquid Crystals. IEEE MTT-S International Microwave Symposium Digest, Seattle, 2-7 June 2002, Vol. 1, 367-370.
[19]  Nestoros, M., Papanicolaou, N.C. and Polycarpou, A.C. (2019) Design of Beam-Steerable Array for 5G Applications Using Tunable Liquid-Crystal Phase Shifters. 13th European Conference on Antennas and Propagation (EuCAP), Krakow, 31 March-5 April 2019, 1-4.
[20]  Yaghmaee, P., Kaufmann, T., Bates, B. and Fumeaux, C. (2012) Effect of Polyimide Layers on the Permittivity Tuning Range of Liquid Crystals. 6th European Conference on Antennas and Propagation (EUCAP), Prague, 26-30 March 2012, 3579-3582.
https://doi.org/10.1109/EuCAP.2012.6205944
[21]  Jung, Y. and Diawuo, H.A. (2018) Broadband Proximity-Coupled Microstrip Planar Antenna Array for 5G Cellular Applications. IEEE Antennas and Wireless Propagation Letters, 17, 1286-1290. https://doi.org/10.1109/LAWP.2018.2842242
[22]  Ikram, M., Nguyen-trong, N. and Abbosh, A. (2019) Patch Antenna Array with Continuous Frequency and Polarization Tuning for 5G Mid-Band Communications. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, 7-12 July 2019, 911-912.
https://doi.org/10.1109/APUSNCURSINRSM.2019.8888876
[23]  Parchin, N.O., Basherlou, H.J., Al-yasir, Y.I.A., Ullah, A., Abd, R.A., Noras, J.M., Bd, B., College, B. and Yorkshire, W. (2019) Frequency Reconfigurable Antenna Array with Compact End-Fire Radiators for 4G/5G Mobile Handsets. 2019 IEEE 2nd 5G World Forum, Dresden, 30 September-2 October 2019, 204-207.
https://doi.org/10.1109/5GWF.2019.8911707
[24]  Parchin, N.O., et al. (2019) Recent Developments of Reconfigurable Antennas for Current and Future Wireless Communication Systems. Electronics Letters, 8, 1-17.
https://doi.org/10.3390/electronics8020128
[25]  Zainarry, S.N.M., Nguyen-Trong, N. and Fumeaux, C. (2018) A Frequency and Pattern-Reconfigurable Two-Element Array Antenna. IEEE Antennas and Wireless Propagation Letters, 17, 617-620.
https://doi.org/10.1109/LAWP.2018.2806355
[26]  El-Hassan Hajj, A., Fadlallah, N., El-Nashef, G., Rammal, M. and Rachid, E. (2019) Compact Reconfigurable Stacked Patch Antenna Using Liquid Crystal for 5G Networks. 2nd IEEE Middle East and North Africa Communications Conference (MENACOMM), Manama, 19-21 November 2019, 2-5.
[27]  Evonik (2011) Dielectric Properties ROHACELL®. 1-3.
[28]  Ikram, M., Al Abbas, E., Nguyen-trong, N., Sayidmarie, K.H. and Abbosh, A. (2019) Integrated Frequency-Reconfigurable Slot Antenna and Connected Slot Antenna Array for 4G and 5G. IEEE Transactions on Antennas and Propagation, 67, 7225-7233.
https://doi.org/10.1109/TAP.2019.2930119
[29]  Lee, C., Khattak, M.K. and Kahng, S. (2018) Wideband 5G Beamforming Printed Array Clutched by lte-a 4x4 Multiple-Input-Multiple-Output Antennas with High Isolation. IET Microwaves, Antennas & Propagation, 12, 1407-1413.
https://doi.org/10.1049/iet-map.2017.0946
[30]  Al Abbas, E., Member, S., Nguyen-trong, N. and Toaha, A. (2019) Polarization- Reconfigurable Antenna Array for Millimeter-Wave 5G. IEEE Access, 7, 131214- 131220. https://doi.org/10.1109/ACCESS.2019.2939815
[31]  Ikram, M., Sharawi, M.S., Shamim, A. and Shamim, A. (2018) A Multiband Dual-Standard MIMO Antenna System Based on Monopoles (4G) and Connected Slots (5G) for Future Smart Phones. Microwave and Optical Technology Letters, 60, 1468-1476.
https://doi.org/10.1002/mop.31180
[32]  Hussain, S. R., Alreshaid, A.T., Podilchak, S.K. and Sharawi, M. (2017) Compact 4G MIMO Antenna Integrated with a 5G Array for Current and Future Mobile Handsets. IET Microwaves, Antennas & Propagation, 11, 271-279.
https://doi.org/10.1049/iet-map.2016.0738
[33]  Sharawi, M.S., Ikram, M. and Shamim, A. (2017) A Two Concentric Slot Loop Based Connected Array MIMO Antenna System for 4G/5G Terminals. IEEE Transactions on Antennas and Propagation, 65, 6679-6686.
https://doi.org/10.1109/TAP.2017.2671028

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413