全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Green Synthesis of Silver Nanoparticles Using Cannabis sativa Extracts and Their Anti-Bacterial Activity

DOI: 10.4236/gsc.2021.111004, PP. 38-48

Keywords: Hemp, Silver Nanoparticles, Green Synthesis, Pathogens

Full-Text   Cite this paper   Add to My Lib

Abstract:

A procedure for the green synthesis of silver nanoparticles (AgNPs) using Cannabis sativa (hemp plant) as a stabilizing media was developed and antibacterial activity was tested. Within 30 minutes of heating the mixture of silver nitrate and hemp extract, the formation of silver nanoparticles took place under the complete absence of a chemical reducing or an additional stabilizing agent. The so-formed AgNPs were characterized using different optical spectroscopy and electron microscopy techniques. The initial formation of AgNPs was established from UV-Vis data based on surface plasmon resonance (SPR) of AgNPs at ~417 nm. The exact size, shape, and elemental composition of AgNPs were established from ESEM images and EDS data. The antibacterial activity of these nanoparticles was studied on Gram-positive Staphylococcus aureus, and Gram-negative Escherichia coli following Disk diffusion and Minimum Inhibitory Concentration (MIC) tests. Results showed that the biosynthesis of silver nanoparticles using hemp extract could be a simple,inexpensive, and biocompatible method.

References

[1]  Luo, Y., Yang, F., Mathieu, J., Mao, D., Wang, Q. and Alvarez, P.J.J. (2014) Proliferation of Multidrug-Resistant New Delhi Metallo-β-Lactamase Genes in Municipal Wastewater Treatment Plants in Northern China. Environmental Science & Technology Letters, 1, 26-30.
https://doi.org/10.1021/ez400152e
[2]  O’Neill, J. (2014) Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations.
https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis
[3]  Kharissova, O.V., Dias, H.R., Kharisov, B.I., Pérez, B.O. and Pérez, V.M.J. (2013) The Greener Synthesis of Nanoparticles. Trends in Biotechnology, 31, 240-248.
https://doi.org/10.1016/j.tibtech.2013.01.003
[4]  Logeswari, P., Silambarasan, S. and Abraham, J. (2013) Ecofriendly Synthesis of Silver Nanoparticles from Commercially Available Plant Powders and Their Antibacterial Properties. Scientia Iranica, 20, 1049-1054.
[5]  Marpu, S., Kolailat, S.S., Korir, D., Kamras, B.L., Chaturvedi, R., Joseph, A., Omary, M.A., et al. (2017) Photochemical Formation of Chitosan-Stabilized Near-Infrared-Absorbing Silver Nanoworms: A “Green” Synthetic Strategy and Activity on Gram-Negative Pathogenic Bacteria. Journal of Colloid and Interface Science, 507, 437-452.
https://doi.org/10.1016/j.jcis.2017.08.009
[6]  Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., De, S.P. and Misra, A. (2009) Green Synthesis of Silver Nanoparticles Using Latex of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339, 134-139.
https://doi.org/10.1016/j.colsurfa.2009.02.008
[7]  Spadaro, J.A., Berger, T.J., Barranco, S.D., Chapin, S.E. and Becker, R.O. (1974) Antibacterial Effects of Silver Electrodes with Weak Direct Current. Antimicrobial Agents and Chemotherapy, 6, 637-642.
https://doi.org/10.1128/AAC.6.5.637
[8]  Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N. and Kim, J.O. (2000) A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52, 662-668.
https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
[9]  Xu, Q., Li, S., Wan, Y., Wang, S., Ma, B., She, Z., Dong, J., et al. (2017) Impacts of Silver Nanoparticles on Performance and Microbial Community and Enzymatic Activity of a Sequencing Batch Reactor. Journal of Environmental Management, 204, 667-673.
https://doi.org/10.1016/j.jenvman.2017.09.050
[10]  AshaRani, P.V., Low Kah Mun, G., Hande, M.P. and Valiyaveettil, S. (2009) Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano, 3, 279-290.
https://doi.org/10.1021/nn800596w
[11]  Lok, C.N., Ho, C.M., Chen, R., He, Q.Y., Yu, W.Y., Sun, H., Tam, P.K., Chiu, J.F. and Che, C.M. (2006) Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles. Journal of Proteome Research, 5, 916-924.
https://doi.org/10.1021/pr0504079
[12]  Singh, P., Kim, Y.J., Zhang, D. and Yang, D.C. (2016) Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends in Biotechnology, 34, 588-599.
https://doi.org/10.1016/j.tibtech.2016.02.006
[13]  Gogoi, S.K., Gopinath, P., Paul, A., Ramesh, A., Ghosh, S.S. and Chattopadhyay, A. (2006) Green Fluorescent Protein-Expressing Escherichia coli as a Model System for Investigating the Antimicrobial Activities of Silver Nanoparticles. Langmuir, 22, 9322-9328.
https://doi.org/10.1021/la060661v
[14]  Vilchis-Nestor, A.R., Sanchez-Mendieta, V., Camacho-Lopez, M.A., GomezEspinosa, R.M., Camacho-Lopez, M.A. and Arenas-Alatorre, J.A. (2008) Solventless Synthesis and Optical Properties of Au and Ag Nanoparticles Using Camellia sinensis Extract. Materials Letters, 62, 3103-3105.
https://doi.org/10.1016/j.matlet.2008.01.138
[15]  Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T. and Mohan, N.J. (2010) Synthesis of Silver Nanoparticles Using Acalypha indica Leaf Extracts and Its Antibacterial Activity against Water Borne Pathogens. Colloids and Surfaces B: Biointerfaces, 76, 50-56.
https://doi.org/10.1016/j.colsurfb.2009.10.008
[16]  Shiv Shankar, S., Rai, A., Ahmad, A. and Sastry, M. (2004) Rapid Synthesis of Au, Ag, and Bimetallic Au Core-Ag Shell Nanoparticles Using Neem (Azadirachta indica) Leaf Broth. Journal of Colloid and Interface Science, 275, 496-502.
https://doi.org/10.1016/j.jcis.2004.03.003
[17]  Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A. and Sastry, M. (2006) Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe vera Plant Extract. Biotechnology Progress, 22, 577-583.
https://doi.org/10.1021/bp0501423
[18]  Vigneshwaran, N., Nachane, R.P., Balasubramanya, R.H. and Varadarajan, P.V. (2006) A Novel One Pot “Green” Synthesis of Stable Silver Nanoparticles Using Soluble Starch. Carbohydrate Research, 341, 2012-2018.
https://doi.org/10.1016/j.carres.2006.04.042
[19]  Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A. and Sastry, M. (2006) Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloevera Plant Extract. Biotechnology Progress, 22, 577-583.
https://doi.org/10.1021/bp0501423
[20]  Shankar, S.S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A. and Sastry, M. (2004) Biological Synthesis of Triangular Gold Nanoprisms. Nature Materials, 3, 482-488.
https://doi.org/10.1038/nmat1152
[21]  Shankar, S.S., Rai, A., Ahmad, A. and Sastry, M. (2005) Controlling the Optical Properties of Lemongrass Extract Synthesized Gold Nanotriangles and Potential Application in Infrared-Absorbing Optical Coatings. Chemistry of Materials, 17, 566-572.
https://doi.org/10.1021/cm048292g
[22]  Mandal, S. and Shi, S.Q. (2020) Agricultural Plants and Their Antimicrobial Activities—A Mini Review.
[23]  Chopra, R.N. and Chopra, R.N. (1969) Supplement to Glossary of Indian Medicinal Plants.
[24]  Khan, B.A., Warner, P. and Wang, H. (2014) Antibacterial Properties of Hemp and Other Natural Fibre Plants: A Review. BioResources, 9, 3642-3659.
https://doi.org/10.15376/biores.9.2.3642-3659
[25]  Singh, P., Pandit, S., Garnæs, J., Tunjic, S., Mokkapati, V.R., Sultan, A., Baun, A., et al. (2018) Green Synthesis of Gold and Silver Nanoparticles from Cannabis sativa (Industrial Hemp) and Their Capacity for Biofilm Inhibition. International Journal of Nanomedicine, 13, 3571.
https://doi.org/10.2147/IJN.S157958
[26]  Pearce, D.D., Mitsouras, K. and Irizarry, K.J. (2014) Discriminating the Effects of Cannabis sativa and Cannabis indica: A Web Survey of Medical Cannabis Users. Journal of Alternative and Complementary Medicine, 20, 787-791.
https://doi.org/10.1089/acm.2013.0190
[27]  Tenover, F.C., Arbeit, R.D., Goering, R.V., Mickelsen, P.A., Murray, B.E., Persing, D.H. and Swaminathan, B. (1995) Interpreting Chromosomal DNA Restriction Patterns Produced by Pulsed-Field Gel Electrophoresis: Criteria for Bacterial Strain Typing. Journal of Clinical Microbiology, 33, 2233-2239.
https://doi.org/10.1128/jcm.33.9.2233-2239.1995
[28]  Singh, P., Singh, H., Kim, Y.J., Mathiyalagan, R., Wang, C. and Yang, D.C. (2016) Extracellular Synthesis of Silver and Gold Nanoparticles by Sporosarcina koreensis DC4 and Their Biological Applications. Enzyme and Microbial Technology, 86, 75-83.
https://doi.org/10.1016/j.enzmictec.2016.02.005
[29]  Ashraf, J.M., Ansari, M.A., Khan, H.M., Alzohairy, M.A. and Choi, I. (2016) Green Synthesis of Silver Nanoparticles and Characterization of Their Inhibitory Effects on AGEs Formation Using Biophysical Techniques. Scientific Reports, 6, Article No. 20414.
https://doi.org/10.1038/srep20414
[30]  Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., Hong, J. and Chen, C. (2007) Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum camphora Leaf. Nanotechnology, 18, Article ID: 105104.
https://doi.org/10.1088/0957-4484/18/10/105104
[31]  Akter, M., Rahman, M.M., Ullah, A.A., Sikder, M.T., Hosokawa, T., Saito, T. and Kurasaki, M. (2018) Brassica rapa var. japonica Leaf Extract Mediated Green Synthesis of Crystalline Silver Nanoparticles and Evaluation of Their Stability, Cytotoxicity, and Antibacterial Activity. Journal of Inorganic and Organometallic Polymers and Materials, 28, 1483-1493.
https://doi.org/10.1007/s10904-018-0818-7
[32]  Khan, B.A., Wang, J., Warner, P. and Wang, H. (2015) Antibacterial Properties of Hemp Hurd Powder against E. coli. Journal of Applied Polymer Science, 132, 41588.
https://doi.org/10.1002/app.41588
[33]  Bindhu, M.R. and Umadevi, M. (2013) Synthesis of Monodispersed Silver Nanoparticles Using Hibiscus cannabinus Leaf Extract and Its Antimicrobial Activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 101, 184-190.
https://doi.org/10.1016/j.saa.2012.09.031
[34]  Rabbi, M.A., Rahman, M.M., Minami, H., Habib, M.R. and Ahmad, H. (2020) Ag Impregnated Sub-Micrometer Crystalline Jute Cellulose Particles: Catalytic and Antibacterial Properties. Carbohydrate Polymers, 233, Article ID: 115842.
https://doi.org/10.1016/j.carbpol.2020.115842

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413