全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Smart Grid  2021 

海上风电场送出系统工频过电压机理与特性研究
Research on Power Frequency Overvoltage Mechanism and Characteristics of Offshore Wind Farm Transmission System

DOI: 10.12677/SG.2021.111008, PP. 75-88

Keywords: 海底电缆,工频过电压,海上风电场,送出系统,ATP-EMPT
Submarine Cable
, Power Frequency over Voltage, Offshore Wind Farm, Transmission System, ATP-EMPT

Full-Text   Cite this paper   Add to My Lib

Abstract:

大型海上风电场一般离岸较远,主要依赖于高电容海底电缆将电能送出,可能产生较为严重的过电压。但海底电缆敷设于海底难以检修,所发生的故障一般为永久性故障,会给电力系统造成巨大损失。作为威胁海底电缆安全可靠运行的重要因素,海上风电场送出系统的工频过电压机理与特性亟待系统性的总结和研究。本文从原理上分析了海上风电场工频过电压产生的机理与特征;并基于ATP-EMPT对500 kV海上风电场及其送出系统进行建模,对海缆参数进行了修正,以保证模型的准确性;同时,仿真计算了在不同容量情况下,海上风电场及其送出系统的五种不同工况运行时,海缆的容升效应、单相接地故障、无故障突然甩负荷、单相接地故障突然甩负荷和两相接地故障甩负荷时的工频过电压,结合理论分析,最终总结了影响海上风电场送出系统工频过电压的因素及其影响趋势。
Large-scale offshore wind farms are generally far away from the shore, and mainly rely on high- capacitance submarine cables to send electrical energy, which may generate serious overvoltages. However, it is difficult to repair submarine cables when laid on the seabed. The faults that occur are generally permanent faults, which will cause huge losses to the power system. As an important factor that threatens the safe and reliable operation of submarine cables, the power frequency overvoltage mechanism and characteristics of the transmission system of offshore wind farms urgently need to be systematically summarized and studied. This paper analyzes the mechanism and characteristics of power frequency overvoltage in offshore wind farms in principle; then, based on ATP-EMPT, the 500 kV offshore wind farm and its delivery system are modeled, and the submarine cable parameters are corrected to ensure the accuracy of the model; what’s more, the simulation calculated the power frequency overvoltage of five various fault conditions (the capacity rise effect of submarine cables, single-phase grounding faults, no-fault sudden load rejection, single-phase ground fault sudden load rejection, and two-phase ground fault load rejection) when the transmission system are operating in five different working conditions under different capacity conditions. Combined with theoretical analysis, the factors that affect the power frequency overvoltage of the offshore wind farm transmission system and their influence trends are finally summarized.

References

[1]  赵远涛, 李健, 罗楚军. 海南联网工程海底电缆过电压与绝缘配合研究[J]. 智能电网, 2017, 5(1): 17-22.
[2]  Rizk, F.A.M. (1989) Switching Impulse Strength of Air Insulation: Leader Inception Criterion. IEEE Transactions on Power Delivery, 4, 2187-2195.
https://doi.org/10.1109/61.35646.
[3]  Zhou, P.H., Dai, M. and He, H.W. (2012) Overvoltage and Insulation Coordination for Valve Winding of ±800 kV UHVDC Converter Transformer. High Voltage Engineering, 38, 3146-3155.
[4]  牛涛, 许文超, 钱康, 施超, 车尉尉. 220kV电缆线路过电压计算与分析[J]. 电工电气, 2016(9): 33-37.
[5]  张正祥, 李健, 赵远涛, 罗楚军, 郑伟. 海南联网工程500kV交流海底电缆雷电侵入波过电压研究[J]. 南方电网技术, 2015, 9(3): 41-45.
[6]  姜芸, 潘震东, 房岭锋. 静安站500kV 16km超长电缆进线工程安装新技术[J]. 华东电力, 2010, 38(4): 465-468.
[7]  李超群, 张嘉旻, 谢伟, 马仁明, 赵丹丹, 张屹. 500kV城市电缆线路过电压研究[J]. 华东电力, 2012, 40(5): 869-872.
[8]  王晓彤, 项祖涛, 班连庚, 蒋卫平, 钱康, 牛涛. 500kV电缆线路工频参数的计算与分析[J]. 电网技术, 2013, 37(8): 2310-2315.
[9]  周远翔, 刘睿, 张云霄, 赵健康, 陈铮铮. 高压/超高压电力电缆关键技术分析及展望[J]. 电工文摘, 2014(6): 1-14.
[10]  李炬添. 海上风电场海底高压电缆雷电过电压研究[J]. 电工技术, 2012(12): 45-46.
[11]  赵丹丹, 张嘉旻, 黄华, 马仁明. 220kV城市电缆及混合线路过电压及绝缘配合研究[J]. 华东电力, 2012, 40(2): 270-274.
[12]  金作林, 陈小月, 文习山, 郭卫, 任志刚. 海上风电场220kV海底长电缆送出线工频及操作过电压研究[J]. 电瓷避雷器, 2020(1): 47-53.
[13]  陈政, 康义, 马怡情. 广东—海南500kV交流跨海联网工程无功补偿及电磁暂态研究[J]. 电网技术, 2009, 33(19): 143-147.
[14]  赵健康, 陈铮铮. 国内外海底电缆工程研究综述[J]. 华东电力, 2011, 39(9): 1477-1481.
[15]  陈凌云, 朱熙樵, 李泰军. 海南联网工程海底电缆的选择[J]. 高电压技术, 2006(7): 39-42.
[16]  卓金玉. 电力电缆设计原理[M]. 北京: 机械工业出版社, 1999.
[17]  Barrett, J.S. and Anders, G.J. (1997) Circulating Current and Hysteresis Losses in Screens, Sheaths and Armour of Electric Power Cables-Mathematical Models and Comparison with IEC Standard 287. IEE Proceedings: Science, Measurement and Technology, 144, 101-110.
https://doi.org/10.1049/ip-smt:19971162.
[18]  陈凌云, 朱熙樵. 加拿大本土至温哥华岛500kV交流海底电缆工程[J]. 国际电力, 2005(1): 48-50.
[19]  Foxall, R.G., w-Larsen, K.B. and Bazzi, G. (1984) Design, Manufacture and Installation of a 525 kV Alternating Current Submarine Cable Link from Mainland Canada to Vancouver Island. Proceedings of International Conference on Large High Voltage Electric Systems, 30, 1-10.
[20]  Silva, F.M.F.D. (2011) Analysis and Simulation of Electromagnetic Transients in HVAC Cable Transmission Grids. Aalborg University, Aalborg.
[21]  门汉文, 崔国璋, 王海. 电力电缆及电线[M]. 北京: 中国电力出版社, 2001.
[22]  聂世民. 单芯交联聚乙烯电力电缆金属护层感应电压限制措施研究[D]: [硕士学位论文]. 天津: 天津大学, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413