全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Smart Grid  2021 

可移动应急电源在电力–交通网络中的配置与调度研究
Research on Configuration and Scheduling of Mobile Emergency Power Supply in Power Transportation Network

DOI: 10.12677/SG.2021.111007, PP. 58-74

Keywords: 极端事件,应急电源,电力-交通网,生存力,恢复力,配置与调度
Extreme Events
, Emergency Power Source, Power-Traffic Network, Survivability, Resilience, Preset and Dispatching

Full-Text   Cite this paper   Add to My Lib

Abstract:

考虑到不确定性极端事件的到来会对电力网和交通网同时造成破坏,本文利用可移动电源作为电力交通网耦合的桥梁,通过最短路径算法研究应急电源的移动规律,使应急电源能够最快地对电力系统重要负荷进行修复,减小系统损失。为更好地提高电力系统生存抵抗力和恢复力,分别对应预置和调度两个阶段,本文第一阶段建立了一个针对多场景下电力–交通网破坏的应急电源预置模型,考虑了电力系统常规约束、应急电源位置约束等,同时采用改进后的Dijkstra算法对道路破坏的交通系统进行处理求解出任意节点间的移动距离,第二阶段建立了灾害到来时应急电源实时调度模型,考虑电力交通相关约束,最后该两阶段模型在python-gurobi上实现,案例采用IEEE33节点系统,求解得出应急电源预置和调度结果。
Considering that the arrival of uncertain extreme events will damage the power and traffic network at the same time, this paper uses the mobile power source as the coupling bridge of the power and traffic network, and studies the movement rule of the emergency power source through the shortest path algorithm, so that the emergency power supply can repair the important load of the power system as soon as possible and reduce the system loss. In order to improve the survivability and resilience of the power system, in this paper, we first establish an emergency power source preset model for multi-scenario power-traffic network disruption, which takes into account the conventional constraints of the power system and the location constraints of the emergency power source. At the same time, the improved Dijkstra algorithm is used to deal with the traffic system with road damage and solve the problem between any nodes in the second stage. The real-time dispatching model of emergency power source is established when the disaster comes. Considering the constraints of electric power and transportation, the two-stage model is implemented on Python gurobi. The IEEE33-node system is used in the case, and the preset and dispatching results of emergency power sources are obtained.

References

[1]  Holling, C.S. (1973) Resilience and Stability of Ecological Systems. Annual Review of Ecology and Systematics, 4, 1-23.
https://doi.org/10.1146/annurev.es.04.110173.000245
[2]  Bie, Z.H., Lin, Y.L., Li, G.F. and Li, F.R. (2017) Battling the Extreme: A Study on the Power System Resilience. Proceedings of the IEEE, 105, 1253-1266.
https://doi.org/10.1109/JPROC.2017.2679040
[3]  Wang, Y.Z., Chen, C., Wang, J.H. and Baldick, R. (2016) Research on Resilience of Power Systems under Natural Disasters—A Review. IEEE Transactions on Power Systems, 31, 1604-1613.
https://doi.org/10.1109/TPWRS.2015.2429656
[4]  别朝红, 林雁翎, 邱爱慈. 弹性电网及其恢复力的基本概念与研究展望[J]. 电力系统自动化, 2015, 39(22): 1-9. http://dx.chinadoi.cn/10.7500/AEPS20150715007
[5]  高海翔, 陈颖, 黄少伟, 许寅. 配电网韧性及其相关研究进展[J]. 电力系统自动化, 2015, 39(23): 1-8. http://dx.chinadoi.cn/10.7500/AEPS20150717002
[6]  U.S. Department of Energy (2009) 2009 Smart Grid System Report. U.S. Department of Energy, Washington DC.
[7]  Wang, X., Li, Z.Y., Shahidehpour, M. and Jiang, C.W. (2017) Robust Line Hardening Strategies for Improving the Resilience of Distribution Systems with Variable Renewable Resources. IEEE Transactions on Sustainable Energy, 10, 386-395.
https://doi.org/10.1109/TSTE.2017.2788041
[8]  Lei, S.B., Chen, C., Zhou, H. and Hou, Y.H. (2018) Routing and Scheduling of Mobile Power Sources for Distribution System Resilience Enhancement. IEEE Transactions on Smart Grid, 10, 5650-5662.
https://doi.org/10.1109/TSG.2018.2889347
[9]  Lei, S.B., Chen, C., Li, Y.P. and Hou, Y.H. (2019) Resilient Disaster Recovery Logistics of Distribution Systems: Co-Optimize Service Restoration with Repair Crew and Mobile Power Source Dispatch. IEEE Transactions on Smart Grid, 10, 6187-6202.
https://doi.org/10.1109/TSG.2019.2899353
[10]  Ge, Y.Y., Du, L.L. and Ye, H.X. (2019) Co-Optimization Approach to Post-Storm Recovery for Interdependent Power and Transportation Systems. Journal of Modern Power Systems and Clean Energy, 7, 688-695.
https://doi.org/10.1007/s40565-019-0524-7
[11]  Fotouhi. H., Moryadee, S. and Miller-Hooks, E. (2017) Quantifying the resilience of an urban traffic-electric power coupled system. Reliability Engineering & System Safety, 163, 79-94.
https://doi.org/10.1016/j.ress.2017.01.026
[12]  Lei, S.B., Wang, J.H., Chen, C. and Hou, Y.H. (2016) Mobile Emergency Generator Pre-Positioning and Real-Time Allocation for Resilient Response to Natural Disasters. IEEE Transactions on Smart Grid, 9, 2030-2041.
https://doi.org/10.1109/TSG.2016.2605692
[13]  张威威, 李瑞敏, 谢中教. 基于深度学习的城市道路旅行时间预测[J]. 系统仿真学报, 2017, 29(10): 2309-2315+2322. http://dx.chinadoi.cn/10.16182/j.issn1004731x.joss.201710011
[14]  何胜学. 考虑目的地选择的交通流分配双层规划模型及算法[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(4): 596-600. http://dx.chinadoi.cn/10.3963/j.issn.2095-3844.2019.04.005
[15]  Baran, M.E. and Wu, F.F. (1989) Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing. IEEE Transactions on Power Delivery, 4, 1401-1407.
https://doi.org/10.1109/61.25627
[16]  杨娴. 电动汽车对电力/交通网络的影响研究[D]:[硕士学位论文]. 长沙: 湖南大学, 2018.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413