全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钴基催化剂费托合成制高碳醇研究进展
Research Progress in Fischer Tropsch Synthesis over Co-Based Catalysts for Higher Carbon Alcohol Synthesis

DOI: 10.12677/AMC.2021.92005, PP. 45-50

Keywords: 钴基催化剂,费托合成,密度泛函理论,高碳醇
Co-Based Catalysts
, Fischer Tropsch Synthesis (FTS), Density Functional Theory (DFT), Higher Carbon Alcohol

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文概述了近年来生产高碳醇的方法及发展趋势,主要综述了通过密度泛函理论对钴基催化剂界面在费托反应条件下制备高碳醇的最新研究进展,及钴基催化剂结构敏感性对产物分布的影响。最后对钴基催化剂制高级醇的主要挑战提出了展望和建议。
This paper describes the production methods and development trend of high carbon alcohol in recent years. The recent progress in the preparation of high carbon alcohols by cobalt-based catalysts under the conditions of Fischer-Tropsch reaction and the influence of structural sensitivity of cobalt-based catalysts on product distribution by density functional theory (DFT) are reviewed. Finally, we put forward prospects and suggestions on the main challenges of cobalt-based catalysts to produce high-carbon alcohols.

References

[1]  Cheng, J., Hu, P., Ellis, P., French, S., Kelly, G. and Lok, C.M. (2010) Density Functional Theory Study of Iron and Cobalt Carbides for Fischer-Tropsch Synthesis. The Journal of Physical Chemistry C, 114, 1085-1093.
https://doi.org/10.1021/jp908482q
[2]  Zhao, Y.H., Sun, K.J., Ma, X.F., et al. (2011) Chain Growth via Formyl Insertion on Rh and Co Catalysts in Syngas Conversion. Angewandte Chemie International Edition, 50, 5335-5338.
https://doi.org/10.1002/anie.201100735
[3]  Liu, J.X., Pei, Y.P., Zhao, Y.H., et al. (2015) High Alcohols Synthesis via Fischer-Tropsch Reaction at Cobalt Metal/Carbide Interface. ACS Catalysis, 5, 3620-3624.
https://doi.org/10.1021/acscatal.5b00791
[4]  王川. 合成气制高碳醇Co-Co2C基催化剂项目通过鉴定[J]. 石油化工技术与经济, 2020, 36: 10.
[5]  石博文, 刘素丽, 袁华, 孙向前. 羰基合成高碳醇工艺进展及费托烯烃产品氢甲酰化[J]. 化工科技, 2020, 28(1): 59-64.
[6]  Xu, X.D., Doesburg, E.B.M., Scholten, J.J.F., et al. (1987) Synthesis of Higher Alcohol from Syngas-Recently Patented Catalysts and Tentative Ideas on the Mechanism. Catalysis Today, 2, 125-170.
https://doi.org/10.1016/0920-5861(87)80002-0
[7]  Lundeen, A. and Poe, R. (1977) Encyclopedia of Chemical Processing and Design. Vol. 2, Marcel Dekker Inc., New York, 465-481.
[8]  Breit, B. (2003) Synthetic Aspects of Stereoselective Hydroformylation. Accounts of Chemical Research, 36, 264-275.
https://doi.org/10.1021/ar0200596
[9]  Cosultchi, A., Perez-Luna, M., Antonio Morales-Serna, J., et al. (2012) Characterization of Modified Fischer-Tropsch Catalysts Promoted with Alkaline Metals for Higher Alcohol Synthesis. Catalysis Letters, 142, 368-377.
https://doi.org/10.1007/s10562-012-0765-9
[10]  Zhao, Y.H., Su, H.Y., Sun, K., et al. (2012) Structural and Electronic Properties of Cobalt Carbide Co2C and Its Surface Stability: Density Functional Theory Study. Surface Science, 606, 598-604.
https://doi.org/10.1016/j.susc.2011.11.025
[11]  Faraoun, H.I., Zhang, Y.D., Esling, C., et al. (2006) Crystalline, Electronic and Magnetic Structures of θ-Fe3C, χ-Fe5C2 and η-Fe2C from First Principle Calculation. Journal of Applied Physics, 99, Article ID: 093508.
https://doi.org/10.1063/1.2194118
[12]  Bao, L.L., Huo, C.F., Deng, C.M., et al. (2009) Structure and Stability of the Crystal Fe2C and Low Index Surfaces. Journal of Fuel Chemistry and Technology, 37, 104-108.
https://doi.org/10.1016/S1872-5813(09)60012-8
[13]  Volkova, G.G., Yurieva, T.M., Plyasova, L.M., Naumova, M.I. and Zaikovskii, V.I.J. (2000) Role of the Cu-Co Alloy and Cobalt Carbide in Higher Alcohol Synthesis. Journal of Molecular Catalysis A: Chemical, 158, 389-393.
https://doi.org/10.1016/S1381-1169(00)00110-2
[14]  Zhao, Z., Lu, W., Yang, R., Zhu, H., Dong, W., Sun, F., Jiang, Z., Lyu, Y., Liu, T., Du, H. and Ding, Y. (2018) Insight into the Formation of Co@Co2C Catalysts for Direct Synthesis of Higher Alcohols and Olefins from Syngas. ACS Catalysis, 8, 228-241.
https://doi.org/10.1021/acscatal.7b02403
[15]  Luk, H.T., Mondelli, C., Ferre, D.C., Stewart, J.A. and Perez-Ramirez, J. (2017) Status and Prospects in Higher Alcohols Synthesis from Syngas. Chemical Society Reviews, 46, 1358-1426.
https://doi.org/10.1039/C6CS00324A
[16]  Subramanian, N.D., Kumar, C.S.S.R., Watanabe, K., et al. (2012) A Drifts Study of CO Adsorption and Hydrogenation on Cu-Based Core-Shell Nanoparticles. Catalysis Science & Technology, 2, 621-631.
https://doi.org/10.1039/c2cy00413e
[17]  Subramanian, N.D., Moreno, J., Spivey, J.J., et al. (2011) Copper Core-Porous Manganese Oxide Shell Nanoparticles. The Journal of Physical Chemistry C, 115, 14500-14506.
https://doi.org/10.1021/jp202215k
[18]  Wang, B., Liang, D., Zhang, R. and Ling, L. (2018) Crystal Facet Dependence for the Selectivity of C2 Species over Co2C Catalysts in the Fischer-Tropsch Synthesis. The Journal of Physical Chemistry C, 122, 29249-29258.
https://doi.org/10.1021/acs.jpcc.8b08783
[19]  An, Y., Zhao, Y., Yu, F., et al. (2018) Morphology Control of Co2C Nanostructures via the Reduction Process for Direct Production of Lower Olefins from Syngas. Journal of Catalysis, 366, 289-299.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413