全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Direct Effective Viscosity Approach for Modeling and Simulating Bingham Fluids with the Cumulant Lattice Boltzmann Method

DOI: 10.4236/ojfd.2021.111003, PP. 34-54

Keywords: Lattice Boltzmann Method, Bingham Fluids, Generalized Equilibrium

Full-Text   Cite this paper   Add to My Lib

Abstract:

Modeling of fluids with complex rheology in the lattice Boltzmann method (LBM) is typically realized through the introduction of an effective viscosity. For fluids with a yield stress behavior, such as so-called Bingham fluids, the effective viscosity has a singularity for low shear rates and may become negative. This is typically avoided by regularization such as Papanastasiou’s method. Here we argue that the effective viscosity model can be re-interpreted as a generalized equilibrium in which no violation of the stability constraint is observed. We implement a Bingham fluid model in a three-dimensional cumulant lattice Boltzmann framework and compare the direct analytic effective viscosity/generalized equilibrium method to the iterative approach first introduced by Vikhansky which avoids the singularity in viscosity that can arise in the analytic method. We find that both methods obtain similar results at coarse resolutions. However, at higher resolutions the accuracy of the regularized method levels off while the accuracy of the direct method continuously improves. We find that the accuracy of the proposed direct method is not limited by the singularity in viscosity indicating that a regularization is not strictly necessary.

References

[1]  Haist, M., Link, J., Nicia, D., Leinitz, S., Baumert, C., von Bronk, T., Cotardo, D., Pirharati, M.E., Fataei, S., Garrecht, H., et al. (2020) Interlaboratory Study on Rheological Properties of Cement Pastes and Reference Substances: Comparability of Measurements Performed with Different Rheometers and Measurement Geometries. Materials and Structures, 53, 1-26.
https://doi.org/10.1617/s11527-020-01477-w
[2]  Kloft, H., Hack, N., Mainka, J., Brohmann, L., Herrmann, E., Ledderose, L. and Lowke, D. (2019) Additive fertigung im bauwesen: Erste 3-d-gedruckte und bewehrte betonbauteile im shotcrete-3-d-printingverfahren (sc3dp). Bautechnik, 96, 929-938.
https://doi.org/10.1002/bate.201900094
[3]  Bingham, E. (1916) An Investigation of the Laws of Plastic Flow. Bulletin of the Bureau of Standards, 13, 309-353.
https://doi.org/10.6028/bulletin.304
[4]  Geier, M., Schonherr, M., Pasquali, A. and Krafczyk, M. (2015) The Cumulant Lattice Boltzmann Equation in Three Dimensions: Theory and Validation. Computers & Mathematics with Applications, 70, 507-547.
https://doi.org/10.1016/j.camwa.2015.05.001
[5]  Papanastasiou, T.C. (1987) Flows of Materials with Yield. Journal of Rheology, 31, 385-404.
https://doi.org/10.1122/1.549926
[6]  Ginzburg, I. (2002) A Free-Surface Lattice Boltzmann Method for Modelling the Filling of Expanding Cavities by Bingham Fluids. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360, 453-466.
https://doi.org/10.1098/rsta.2001.0941
[7]  Vikhansky, A. (2008) Lattice-Boltzmann Method for Yield-Stress Liquids. Journal of Non-Newtonian Fluid Mechanics, 155, 95-100.
https://doi.org/10.1016/j.jnnfm.2007.09.001
[8]  Tang, G., Wang, S., Ye, P. and Tao, W. (2011) Bingham Fluid Simulation with the Incompressible Lattice Boltzmann Model. Journal of Non-Newtonian Fluid Mechanics, 166, 145-151.
https://doi.org/10.1016/j.jnnfm.2010.11.005
[9]  He, X. and Luo, L.-S. (1997) Lattice Boltzmann Model for the Incompressible Navier-Stokes Equation. Journal of statistical Physics, 88, 927-944.
https://doi.org/10.1023/B:JOSS.0000015179.12689.e4
[10]  Wang, C.-H. and Ho, J.-R. (2008) Lattice Boltzmann Modeling of Bingham Plastics. Physica A: Statistical Mechanics and Its Applications, 387, 4740-4748.
https://doi.org/10.1016/j.physa.2008.04.008
[11]  Kefayati, G.R. (2019) Lattice Boltzmann Method for Natural Convection of a Bingham Fluid in a Porous Cavity. Physica A: Statistical Mechanics and Its Applications, 521, 146-172.
https://doi.org/10.1016/j.physa.2019.01.044
[12]  Mendu, S.S. and Das, P.K. (2020) Simulations for the Flow of Viscoplastic Fluids in a Cavity Driven by the Movement of Walls by Lattice Boltzmann Method. Korea-Australia Rheology Journal, 32, 213-231.
https://doi.org/10.1007/s13367-020-0021-6
[13]  Bosch, F., Chikatamarla, S.S. and Karlin, I.V. (2015) Entropic Multirelaxation Lattice Boltzmann Models for Turbulent Flows. Physical Review E, 92, Article ID: 043309.
https://doi.org/10.1103/PhysRevE.92.043309
[14]  Kramer, A., Wilde, D., Küllmer, K., Reith, D. and Foysi, H. (2019) Pseudoentropic Derivation of the Regularized Lattice Boltzmann Method. Physical Review E, 100, Article ID: 023302.
https://doi.org/10.1103/PhysRevE.100.023302
[15]  Geier, M., Greiner, A. and Korvink, J.G. (2006) Cascaded Digital Lattice Boltzmann Automata for High Reynolds Number Flow. Physical Review E, 73, Article ID: 066705. https://doi.org/10.1103/PhysRevE.73.066705
[16]  Geier, M., Greiner, A. and Korvink, J.G. (2009) A Factorized Central Moment Lattice Boltzmann Method. The European Physical Journal Special Topics, 171, 55-61.
https://doi.org/10.1140/epjst/e2009-01011-1
[17]  Hajabdollahi, F. and Premnath, K.N. (2018) Galilean-Invariant Preconditioned Central-Moment Lattice Boltzmann Method without Cubic Velocity Errors for Efficient Steady Flow Simulations. Physical Review E, 97, Article ID: 053303.
https://doi.org/10.1103/PhysRevE.97.053303
[18]  d’Humieres, D. (2002) Multiple-Relaxation-Time Lattice Boltzmann Models in Three Dimensions. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 360, 437-451.
https://doi.org/10.1098/rsta.2001.0955
[19]  Lallemand, P. and Luo, L.-S. (2000) Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability. Physical Review E, 61, 6546.
https://doi.org/10.1103/PhysRevE.61.6546
[20]  Dellar, P.J. (2006) Non-Hydrodynamic Modes and General Equations of State in Lattice Boltzmann Equations. Physica A: Statistical Mechanics and Its Applications, 362, 132-138.
https://doi.org/10.1016/j.physa.2005.09.012
[21]  Far, E.K., Geier, M., Kutscher, K. and Krafczyk, M. (2016) Simulation of Micro Aggregate Breakage in Turbulent Flows by the Cumulant Lattice Boltzmann Method. Computers & Fluids, 140, 222-231.
https://doi.org/10.1016/j.compfluid.2016.10.001
[22]  Kutscher, K., Geier, M. and Krafczyk, M. (2019) Multiscale Simulation of Turbulent Flow Interacting with Porous Media Based on a Massively Parallel Implementation of the Cumulant Lattice Boltzmann Method. Computers & Fluids, 193, Article ID: 103733.
https://doi.org/10.1016/j.compfluid.2018.02.009
[23]  Lenz, S., Schoenherr, M., Geier, M., Krafczyk, M., Pasquali, A., Christen, A. and Giometto, M. (2019) Towards Real-Time Simulation of Turbulent Air Flow over a Resolved Urban Canopy Using the Cumulant Lattice Boltzmann Method on a GPGPU. Journal of Wind Engineering and Industrial Aerodynamics, 189, 151-162.
https://doi.org/10.1016/j.jweia.2019.03.012
[24]  Qian, Y.-H., d’Humieres, D. and Lallemand, P. (1992) Lattice BGK Models for Navier-Stokes Equation. EPL (Europhysics Letters), 17, 479.
https://doi.org/10.1209/0295-5075/17/6/001
[25]  Coreixas, C., Wissocq, G., Chopard, B. and Latt, J. (2020) Impact of Collision Models on the Physical Properties and the Stability of Lattice Boltzmann Methods. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378, Article ID: 20190397.
https://doi.org/10.1098/rsta.2019.0397
[26]  Junk, M., Klar, A. and Luo, L.-S. (2005) Asymptotic Analysis of the Lattice Boltzmann Equation. Journal of Computational Physics, 210, 676-704.
https://doi.org/10.1016/j.jcp.2005.05.003
[27]  Dellar, P.J. (2014) Lattice Boltzmann Algorithms without Cubic Defects in Galilean Invariance on Standard Lattices. Journal of Computational Physics, 259, 270-283.
https://doi.org/10.1016/j.jcp.2013.11.021
[28]  Asinari, P. (2008) Generalized Local Equilibrium in the Cascaded Lattice Boltzmann Method. Physical Review E, 78, Article ID: 016701.
https://doi.org/10.1103/PhysRevE.78.016701
[29]  Ladd, A.J. (1994) Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation. Part 1. Theoretical Foundation. Journal of Fluid Mechanics, 271, 285-309.
https://doi.org/10.1017/S0022112094001771
[30]  Bouzidi, M., Firdaouss, M. and Lallemand, P. (2001) Momentum Transfer of a Boltzmann-Lattice Fluid with Boundaries. Physics of Fluids, 13, 3452-3459.
https://doi.org/10.1063/1.1399290
[31]  Ginzburg, I. and d’Humieres, D. (2003) Multi-Reaction Boundary Conditions for Lattice Boltzmann Models. Physical Review E, 68, Article ID: 066614.
https://doi.org/10.1103/PhysRevE.68.066614
[32]  Yin, X. and Zhang, J. (2012) An Improved Bounce-Back Scheme for Complex Boundary Conditions in Lattice Boltzmann Method. Journal of Computational Physics, 231, 4295-4303.
https://doi.org/10.1016/j.jcp.2012.02.014
[33]  Geier, M. and Schonherr, M. (2017) Esoteric Twist: An Efficient In-Place Streaming Algorithmus for the Lattice Boltzmann Method on Massively Parallel Hardware. Computation, 5, 19.
https://doi.org/10.3390/computation5020019
[34]  iRMB. VirtualFluids. Institute for Computational Modeling in Civil Engineering of the Technische Universit at Braunschweig.
https://www.tu-braunschweig.de/irmb/forschung/virtualuids
[35]  Geier, M., Pasquali, A. and Schonherr, M. (2017) Parametrization of the Cumulant Lattice Boltzmann Method for Fourth Order Accurate Diffusion Part I: Derivation and Validation. Journal of Computational Physics, 348, 862-888.
https://doi.org/10.1016/j.jcp.2017.05.040
[36]  Geier, M., Lenz, S., Schonherr, M. and Krafczyk, M. (2020) Under-Resolved and Large Eddy Simulations of a Decaying Taylor-Green Vortex with the Cumulant Lattice Boltzmann Method. Theoretical and Computational Fluid Dynamics, 1-40.
https://doi.org/10.1007/s00162-020-00555-7
[37]  Geier, M., Pasquali, A. and Schonherr, M. (2017) Parametrization of the Cumulant Lattice Boltzmann Method for Fourth Order Accurate Diffusion Part II: Application to Flow around a Sphere at Drag Crisis. Journal of Computational Physics, 348, 889-898.
https://doi.org/10.1016/j.jcp.2017.07.004
[38]  Chen, S.-G., Zhang, C.-H., Feng, Y.-T., Sun, Q.-C. and Jin, F. (2016) Three Dimensional Simulations of Bingham Plastic Flows with the Multiple Relaxation-Time Lattice Boltzmann Model. Engineering Applications of Computational Fluid Mechanics, 10, 346-358.
https://doi.org/10.1080/19942060.2016.1169946
[39]  Bird, R.B., Dai, G. and Yarusso, B.J. (1983) The Rheology and Flow of Viscoplastic Materials. Reviews in Chemical Engineering, 1, 1-70.
https://doi.org/10.1515/revce-1983-0102
[40]  Landry, M., Frigaard, I. and Martinez, D. (2006) Stability and Instability of Taylor-Couette Flows of a Bingham Fluid. Journal of Fluid Mechanics, 560, 321.
https://doi.org/10.1017/S0022112006000620

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413