全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Solid-State Fermentation Production of Chitosanase by Streptomyces with Waste Mycelia of Aspergillus niger

DOI: 10.4236/aer.2021.91002, PP. 10-18

Keywords: Streptomyces, Solid State Fermentation, Chitosanase, Waste Mycelia

Full-Text   Cite this paper   Add to My Lib

Abstract:

Solid-state fermentation was carried out using mycelium powder of Aspergillus niger as substrate for the production of chitosanase of Streptomyces. Results of the experiments indicated that the optimal medium consisted of wheat bran and mycelium powder of Aspergillus niger with initial moisture content of 60% - 70%. The enzyme activity reached 41.33 U per gram dry medium after cultured for 5 days at 28°C - 30°C and an initial pH 6.5. Chitosanase was detected on the second day of incubation and had maximal activity at 5 days and decreased gradually within a 1 month period. Solid-state fermentation is maybe an economic alternative in the production.

References

[1]  Kim, S.K. and Rajapakse, N. (2005) Enzymatic Production and Biological Activities of Chitosan Oligosaccharides (COS): A Review. Carbohydrate Polymers, 62, 357-368. https://doi.org/10.1016/j.carbpol.2005.08.012
[2]  Honarkar, H. and Barikani, M. (2009) Applications of Biopolymers I: Chitosan. Monatshefte für Chemie, 140, Article No. 1403.
[3]  Chouhan, D. and Mandal, P. (2021) Applications of Chitosan and Chitosan Based Metallic Nanoparticles in Agrosciences—A Review. International Journal of Biological Macromolecules, 166, 1554-1569.
https://doi.org/10.1016/j.ijbiomac.2020.11.035
[4]  Zhou, J., Liu, X., Yuan, F., Deng, B. and Yu, X. (2020) Biocatalysis of Heterogenously-Expressed Chitosanase for the Preparation of Desirable Chitosan Oligosaccharides Applied against Phytopathogenic Fungi. ACS Sustainable Chemistry & Engineering, 8, 4781-4791. https://doi.org/10.1021/acssuschemeng.9b07288
[5]  Fernandes, J.C., Tavaria, F.K., Fonseca, S.C., Ramos, O.S., Pintado, M.E., Malcata, F.X. (2010) In Vitro Screening for Anti-Microbial Activity of Chitosans and Chitooligosaccharides, Aiming at Potential Uses in Functional Textiles. Journal of Microbiolog and Biotechnology, 20, 311-318. https://doi.org/10.4014/jmb.0904.04038
[6]  Xu, W., Jiang, C., Kong, X., Liang, Y., Rong, M. and Liu, W. (2012) Chitooligosaccharides and N-acetyl-D-glucosamine Stimulate Peripheral Blood Mononuclear Cell-Mediated Antitumor Immune Responses. Molecular Medicine Reports, 6, 385-390.
https://doi.org/10.3892/mmr.2012.918
[7]  Shen, K.T., Chen, M.H., Chan, H.Y., Jeng, J.H. and Wang, Y.J. (2009) Inhibitory Effects of Chitooligosaccharides on Tumor Growth and Metastasis. Food and Chemical Toxicology, 47, 1864-1871.
https://doi.org/10.1016/j.fct.2009.04.044
[8]  Vo, T.S., Kong, C.S. and Kim, S.K. (2011) Inhibitory Effects of Chitooligosaccharides on Degranulation and Cytokine Generation in Rat Basophilic Leukemia RBL-2H3 Cells. Carbohydrate Polymers, 84, 649-655.
https://doi.org/10.1016/j.carbpol.2010.12.046
[9]  Uchida, Y. and Ohtakara, A. (1988) Chitosanase from Bacillus Species. Methods in Enzymology, 161, 501-505.
https://doi.org/10.1016/0076-6879(88)61066-4
[10]  Ferguson, M.J.L. (1999) Chitinoclastic Enzymes from Fungal and Viral Sources. University of Aberdeen, Aberdeen.
[11]  Aktuganov, G.E., Safina, V.R., Galimzianova, N.F., Kuz’mina, L.Y., Gilvanova, E.A., Boyko, T.F., et al. (2018) Chitosan Resistance of Bacteria and Micromycetes Differing in Ability to Produce Extracellular Chitinases and Chitosanases. Microbiology, 87, 716-724. https://doi.org/10.1134/S0026261718050028
[12]  Guo, N., Sun, J., Wang, W., Gao, L. and Mao, X. (2019) Cloning, Expression and Characterization of a Novel Chitosanase from Streptomyces albolongus ATCC 27414. Food Chemistry, 286, 696-702.
https://doi.org/10.1016/j.foodchem.2019.02.056
[13]  Ding, M., Zhang, T., Sun, C., Zhang, H. and Zhang, Y. (2019) A Chitosanase Mutant from Streptomyces Sp. N174 Prefers to Produce Functional Chitopentasaccharide. International Journal of Biological Macromolecules, 151, 1091-1098.
https://doi.org/10.1016/j.ijbiomac.2019.10.151
[14]  da Silva, L.C.A., Honorato, T.L., et al. (2012) Optimization of Chitosanase Production by Trichoderma koningii sp. under Solid-State Fermentation. Food & Bioprocess Technology, 5, 1564-1572.
[15]  Kim, K. and Ji, H.S. (2001) Effect of Chitin Sources on Production of Chitinase and Chitosanase by Streptomyces griseus HUT 6037. Biotechnology & Bioprocess Engineering, 6, 18-24. https://doi.org/10.1007/BF02942245
[16]  Jung, H.S., Son, J.W., Ji, H.S., et al. (1999) Effective Production of Chitinase and Chitosanase by Streptomyces griseus HUT 6037 Using Colloidal Chitin and Various Degrees of Deacetylation of Chitosan. Biotechnology & Bioprocess Engineering, 4, 26-31. https://doi.org/10.1007/BF02931909
[17]  Jiang, X., Chen, D., Chen, L., Yang, G. and Zou, S. (2012) Purification, Characterization, and Action Mode of a Chitosanase from Streptomyces roseolus Induced by Chitin. Carbohydrate Research, 355, 40-44.
https://doi.org/10.1016/j.carres.2012.05.002
[18]  Manan, M.A. and Webb, C. (2020) Newly Designed Multi-Stacked Circular Tray solid-State Bioreactor: Analysis of a Distributed Parameter Gas Balance during Solid-State Fermentation with Influence of Variable Initial Moisture Content Arrangements. Bioresources and Bioprocessing, 7, Article No. 16.
https://doi.org/10.1186/s40643-020-00307-9
[19]  Nagy, V. and Szakacs, G. (2008) Production of Transglutaminase by Streptomyces Isolates in Solid-State Fermentation. Letters in Applied Microbiology, 47, 122-127.
https://doi.org/10.1111/j.1472-765X.2008.02395.x
[20]  Sridhar, M. and Chandrashekaran, M. (2011) Solid State Fermentation (SSF) of Some Fishery and Agro-Industrial Wastes for Animal Feed Production. Advances in Applied Research, 3, 13-25.
[21]  Lizardi-Jiménez, M.A. and Hernández-Martínez, R. (2017) Solid State Fermentation (SSF): Diversity of Applications to Valorize Waste and Biomass. 3 Biotech, 7, Article No. 44. https://doi.org/10.1007/s13205-017-0692-y
[22]  Muzzarelli, R.A.A., Tanfani, F. and Scarpini, G. (2010) Chelating, Film-Forming, and Coagulating Ability of the Chitosan-Glucan Complex from Aspergillus niger Industrial Wastes. Biotechnology and Bioengineering, 22, 885-896.
https://doi.org/10.1002/bit.260220412
[23]  Curotto, E. and Aros, F. (1993) Quantitative Determination of Chitosan and the Percentage of Free Amino Groups. Analytical Biochemistry, 211, 240-241.
https://doi.org/10.1006/abio.1993.1263
[24]  Xia, J., Li, R.Q., He, A.Y., Xu, J.X., Liu, X.Y., Li, X.Q. and Xu, J.M. (2017) Production of Poly(β-L-Malic Acid) by Aureobasidium pullulans HA-4D under Solid-State Fermentation. Bioresource Technology, 244, 289-295.
https://doi.org/10.1016/j.biortech.2017.07.148
[25]  Xu, D.L., Yao, H.Q., Xu, Z.X., Wang, R., Xu, Z., Li, S., et al. (2017) Production of ε-Poly-Lysine by Streptomyces Albulus PD-1 via Solid-State Fermentation. Bioresource Technology, 223, 149-156.
https://doi.org/10.1016/j.biortech.2016.10.032
[26]  Jiang, K., Tang, B., Wang, Q., Xu, Z.Q., Sun, L., Ma, J.J., Li, S., Xu, H. and Lei, P. (2019) The Bio-Processing of Soybean Dregs by Solid State Fermentation Using a Poly Gamma-Glutamic Acid Producing Strain and Its Effect as Feed Additive. Bioresource Technology, 291, Article No. 121841.
https://doi.org/10.1016/j.biortech.2019.121841
[27]  Yeasmin, S., Kim, C.H., Islam, S.M.A. and Lee, J.Y. (2015) Population Dynamics of Cellulolytic Bacteria Depend on the Richness of Cellulosic Materials in the Habitat. Microbiology, 84, 278-289.
https://doi.org/10.1134/S0026261715020186
[28]  Celaya-Herrera, S., Casados-Vázquez, L.E., Valdez-Vazquez, I., Barona-Gómez, F. and Barboza-Corona, J.E. (2020) A Cellulolytic Streptomyces Sp. Isolated from a Highly Oligotrophic Niche Shows Potential for Hydrolyzing Agricultural Wastes. Bioenergy Research, 14, 333-343. https://doi.org/10.1007/s12155-020-10174-z
[29]  Zeng, X., Miao, W., Zeng, H., Zhao, K., Zhou, Y., Zhang, J., et al. (2018) Production of Natamycin by Streptomyces gilvosporeus Z28 through Solid-State Fermentation Using Agro-Industrial Residues. Bioresource Technology, 273, 377-385.
https://doi.org/10.1016/j.biortech.2018.11.009
[30]  Kunamneni, A., Permaul, K. and Singh, S. (2005) Amylase Production in Solid State Fermentation by the Thermophilic Fungus Thermomyces lanuginosus. Journal of Bioscience & Bioengineering, 100, 168-171.
https://doi.org/10.1263/jbb.100.168
[31]  Asagbra, A.E., Sanni, A.I. and Oyewole, O.B. (2005) Solid-State Fermentation Production of Tetracycline by Streptomyces Strains Using Some Agricultural Wastes as Substrate. World Journal of Microbiology and Biotechnology, 21, 107-114.
https://doi.org/10.1007/s11274-004-2778-z

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133