全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Magnetic topological insulators

DOI: https://doi.org/10.1038/s42254-018-0011-5

Full-Text   Cite this paper   Add to My Lib

Abstract:

The importance of global band topology is unequivocally recognized in condensed matter physics, and new states of matter, such as topological insulators, have been discovered. Owing to their bulk band topology, 3D topological insulators possess a massless Dirac dispersion with spin–momentum locking at the surface. Although 3D topological insulators were originally proposed in time-reversal invariant systems, the onset of a spontaneous magnetization or, equivalently, a broken time-reversal symmetry leads to the formation of an exchange gap in the Dirac band dispersion. In such magnetic topological insulators, tuning of the Fermi level in the exchange gap results in the emergence of a quantum Hall effect at zero magnetic field, that is, of a quantum anomalous Hall effect. Here, we review the basic concepts of magnetic topological insulators and their experimental realization, together with the discovery and verification of their emergent properties. In particular, we discuss how the development of tailored materials through heterostructure engineering has made it possible to access the quantum anomalous Hall effect, the topological magnetoelectric effect, the physics related to the chiral edge states that appear in these materials and various spintronic phenomena. Further theoretical and experimental research on magnetic topological insulators will provide fertile ground for the development of new concepts for next-generation electronic devices for applications such as spintronics with low energy consumption, dissipationless topological electronics and topological quantum computation

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413