全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

miR-340-FHL2 axis inhibits cell growth and metastasis in ovarian cancer

DOI: https://doi.org/10.1038/s41419-019-1604-3

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although increasing evidence indicated that deregulation of microRNAs (miRNAs) contributed to tumor initiation and progression, but little is known about the biological role of miR-340 in ovarian cancer (OC). In this study, we found that miR-340 expression was downregulated in OC tissues compared with its expression in normal ovarian epithelium and endometrium, and treatment with 5-aza-2′-deoxycytidine (5-Aza-dC) or trichostatin A (TSA) increased miR-340 expression in OC cells. In addition, ectopic miR-340 expression inhibited OC cell growth and metastasis in vitro and in vivo. Four and a half LIM domains protein 2 (FHL2) was confirmed as a direct target of miR-340 and silencing FHL2 mimicked the effects of miR-340 in OC cells. Further mechanistic study showed that miR-340 inhibited the Wnt/β-catenin pathway by targeting FHL2, as well as downstream cell cycle and epithelial-to-mesenchymal transition (EMT) signals in OC cells. Moreover, the greatest association between miR-340 and FHL2 was found in 481 ovarian serous cystadenocarcinoma tissues via pan-cancer analysis. Finally, we revealed that lower miR-340 or higher FHL2 was associated with poor OC patient outcomes. Our findings indicate that the miR-340-FHL2 axis regulates Wnt/β-catenin signaling and is involved in tumorigenesis in OC. Therefore, manipulating the expression of miR-340 or its target genes is a potential strategy in OC therapy

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413