全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Design and characterization of electrons in a fractal geometry

DOI: https://doi.org/10.1038/s41567-018-0328-0

Full-Text   Cite this paper   Add to My Lib

Abstract:

The dimensionality of an electronic quantum system is decisive for its properties. In one dimension, electrons form a Luttinger liquid, and in two dimensions, they exhibit the quantum Hall effect. However, very little is known about the behaviour of electrons in non-integer, or fractional dimensions1. Here, we show how arrays of artificial atoms can be defined by controlled positioning of CO molecules on a Cu (111) surface2,3,4, and how these sites couple to form electronic Sierpiński fractals. We characterize the electron wavefunctions at different energies with scanning tunnelling microscopy and spectroscopy, and show that they inherit the fractional dimension. Wavefunctions delocalized over the Sierpiński structure decompose into self-similar parts at higher energy, and this scale invariance can also be retrieved in reciprocal space. Our results show that electronic quantum fractals can be artificially created by atomic manipulation in a scanning tunnelling microscope. The same methodology will allow future studies to address fundamental questions about the effects of spin–orbit interactions and magnetic fields on electrons in non-integer dimensions. Moreover, the rational concept of artificial atoms can readily be transferred to planar semiconductor electronics, allowing for the exploration of electrons in a well-defined fractal geometry, including interactions and external fields

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133