全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing – a deep learning approach

DOI: https://doi.org/10.1038/s41377-019-0138-x

Full-Text   Cite this paper   Add to My Lib

Abstract:

Macroscopic fluorescence lifetime imaging (MFLI) via compressed sensed (CS) measurements enables efficient and accurate quantification of molecular interactions in vivo over a large field of view (FOV). However, the current data-processing workflow is slow, complex and performs poorly under photon-starved conditions. In this paper, we propose Net-FLICS, a novel image reconstruction method based on a convolutional neural network (CNN), to directly reconstruct the intensity and lifetime images from raw time-resolved CS data. By carefully designing a large simulated dataset, Net-FLICS is successfully trained and achieves outstanding reconstruction performance on both in vitro and in vivo experimental data and even superior results at low photon count levels for lifetime quantification

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133