全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

An intense thermospheric jet on Titan

DOI: https://doi.org/10.1038/s41550-019-0749-4

Full-Text   Cite this paper   Add to My Lib

Abstract:

The presence of winds in Titan’s lower and middle atmosphere has been determined by a variety of techniques, including direct measurements from the Huygens Probe1 over 0–150?km; Doppler shifts of molecular spectral lines in the optical, thermal infrared and millimetre ranges2,3,4, which together have probed the ~100–450?km altitude range; inferences from the thermal field over 10–0.001?mbar (that is, ~100–500?km)5,6; and inferences from central flashes in stellar occultation curves7,8,9. These measurements predominantly indicated strong prograde winds, reaching maximum speeds of ~150–200?m?s?1 in the upper stratosphere, with important latitudinal and seasonal variations. However, these observations provided incomplete atmospheric sounding; in particular, the wind regime in Titan’s upper mesosphere and thermosphere (500–1,200?km) has remained unconstrained so far. Here we report direct wind measurements based on Doppler shifts of six molecular species observed with the Atacama Large Millimeter/submillimeter Array (ALMA). We show that contrary to expectations, strong prograde winds extend up to the thermosphere, with the circulation progressively turning into an equatorial jet regime as the altitude increases, reaching ~340?m?s?1 at 1,000?km. We suggest that these winds may represent the dynamical response of forcing by waves launched at upper stratospheric/mesospheric levels and/or of magnetospheric–ionospheric interaction. We also demonstrate that the distribution of the hydrogen isocyanide (HNC) molecule is restricted to Titan’s thermosphere above ~870?km altitude

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413