|
- 2019
Soliton collision induced explosions in a mode-locked fibre laserDOI: https://doi.org/10.1038/s42005-019-0134-8 Abstract: Soliton explosion refers to a striking nonlinear dynamics in dissipative systems. In this state, a dissipative soliton collapses but returns back to its original state afterwards. Yet, the origin of such exotic soliton dynamics remains elusive. Here it is revealed that soliton collision can induce soliton explosions in a mode-locked fibre laser, benefiting from synchronous measurements of the spatio-temporal intensity evolution and the real-time spectra evolution using dispersive Fourier transform. Up to seven nonlinear regimes are observed successively in the laser by increasing the pump power only, including single-pulse mode locking, standard soliton explosions, noise-like mode locking, stable double pulsing, soliton collision induced explosions, soliton molecules, and double-pulse noise-like mode locking. These experimental findings are conducive to understand complex soliton dynamics in many nonlinear dissipative systems
|