全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Damping Characterization of Hybrid Carbon Fiber Elastomer Metal Laminates using Experimental and Numerical Dynamic Mechanical Analysis

DOI: https://doi.org/10.3390/jcs3010003

Keywords: fibre metal laminate, dynamic mechanical analysis, damping, CFRP, elastomer, aluminum, numerical analysis, viscoelasticity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Abstract Lightweight structures which consist to a large extent of carbon fiber reinforced plastics (CFRP), often lack sufficient damping behavior. This also applies to hybrid laminates such as fiber metal laminates made of CFRP and aluminum. Since they are usually prone to vibrations due to their high stiffness and low mass, additional damping material is required to meet noise, vibration and harshness comfort demands in automotive or aviation industry. In the present study, hybrid carbon fiber elastomer metal laminates (HyCEML) are investigated which are intended to influence the damping behavior of the laminates by an elastomer interlayer between the CFRP ply and the aluminum sheets. The damping behavior is based on the principle of constrained layer damping. To characterize the damping behavior, dynamic mechanical analyses (DMA) are performed under tension on the elastomer and the CFRP, and under three point bending on the hybrid laminate. Different laminate lay-ups, with and without elastomer, and two different elastomer types are examined. The temperature and frequency dependent damping behavior is related to the bending stiffness and master curves are generated by using the time temperature superposition to analyze the damping behavior at higher frequencies. A numerical model is built up on the basis of DMA experiments on the constituents and micro mechanical studies. Subsequently, three point bending DMA experiments on hybrids are simulated and the results are compared with the experimental investigations. In addition, a parameter study on different lay-ups is done numerically. Increasing vibration damping is correlated to increasing elastomer content and decreasing elastomer modulus in the laminate. A rule of mixture is used to estimate the laminate loss factor for varying elastomer content. View Full-Tex

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133