全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Elastomer Composites with a Tailored Interface Network toward Tunable Piezoresistivity: Effect of Elastomer Particle Size

DOI: https://doi.org/10.1021/acsapm.8b00241

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wearable strain sensors have significant potential applications for the development of the Internet of Things. As such, sensors based on conductive elastomer composites (CECs) for various sensing applications require different piezoresistive properties, i.e., strain sensitivity and sensing ranges. Herein, we report a facile strategy to fabricate thermoplastic polyurethane (TPU)/carbon nanostructure (CNS) composites designed for different applications based on different conductive interface network morphologies via forming the filler network at segregated TPU particles with various sizes. This strategy renders the composites tunable electrical conductivity (4 orders of magnitude change at low filler content) and mechanical and piezoresistive properties upon changing the TPU particle size. The larger the TPU particle size, the denser and stronger the conductive network, leading to higher electrical conductivity, better mechanical reinforcement, and more stable piezoresistive behavior. By contrast, using a smaller TPU particle size gives rise to relatively lower conductivity but higher elongation at break and much higher strain sensitivity. Composites with 0.7 wt % CNS using TPU particle sizes up to 212 μm have a gauge factor of 7668 at 300% tensile strain and elongation at break of 990%; whereas, when using TPU particles with 1000–1400 μm, the gauge factor is 175 for 300% tensile strain, and the elongation at break is 780%. These CEC composites have potential applications for a variety of flexible sensors

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133