全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

Existence and multiplicity results for Dirichlet boundary value problems involving the - Laplace operator

DOI: DOI Code: 10.1285/i15900932v37n1p69

Keywords: variational methods, generalized Lebesgue-Sobolev spaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper is concerned with the existence and multiplicity of solutions for the following Dirichlet boundary value problems involving the -Laplace operator of the form: \begin{equation*} \begin{gathered} -\operatorname{div}(|\nabla u|^{p_{1}(x)-2}\nabla u)- \operatorname{div}(|\nabla u|^{p_{2}(x)-2}\nabla u)= f(x,u) \quad\text{in } \Omega,\\ u=0 \quad \text{on } \partial\Omega. \end{gathered} \end{equation*} By means of critical point theorems with Cerami condition and the theory of the variable exponent Sobolev spaces, we establish the existence and multiplicity of solutions

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133