全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Pressure Effects on the Structural Evolution of Monatomic Metallic Liquid Hafnium

Keywords: Metalik Camlar,Cam ?ekillendirme Yetene?i,Moleküler Dinamik Simülasyon,?ift Analizi,Bas?n? Etkisi,Hafniyum

Full-Text   Cite this paper   Add to My Lib

Abstract:

Structural evolution of monatomic metallic liquid hafnium under high pressures of 0-50 GPa has been investigated by molecular dynamics (MD) simulations using the tight-binding many body potentials during rapidly solidified processes. The structural evolution and glass formation process have been analyzed by using pair distribution functions (PDF), Wendt-Abraham (RWA) parameter, Honeycutt-Andersen (HA) and Voronoi tessellation (VT) methods. When the system has been cooled with a cooling rate of 2x1013 Ks-1, the glassy states are obtained for P≤40 GPa pressures and the crystalline phase is obtained at P=50 GPa pressure. The number of face-centered cubic (fcc) and hexagonal close-packed (hcp) (fcc + hcp) type bonded pairs increase dramatically, while the number of perfect icosahedra, distorted icosahedra and body-centered cubic (bcc) type bonded pairs decreases with increasing of pressure. This is an indication that the solidification process of the system begins with nucleation in the liquid and that nucleation growth with increasing pressure continues to develop. The results show that the variation of local atomic bonded pairs is of great importance to understand the glass formation and crystallization process. However, it has been observed that the applied high pressure weakened icosahedral order and increased the fraction of other clusters in glassy hafnium at low temperatures. Furthermore, it has been observed that all glass transition temperatures (Tg), main bond types and main base clusters change with increasing pressure

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413