全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Oncolytic Engineering of ICP34.5 and LAT of Herpes Simplex Virus Type 1

DOI: 10.4236/ym.2021.52011, PP. 106-116

Keywords: Herpes Simplex Virus, Oncolytic Herpes Simplex Virus, Latency-Associated Transcript, ICP34.5

Full-Text   Cite this paper   Add to My Lib

Abstract:

Oncolytic virus (OV) is a kind of virus that can preferentially infect and kill tumor cells. The second oncolytic virus drug was oncolytic herpes simplex virus (oHSV) Talimogene Laherparepvec (T-VEC). HSV-1 infectious cell culture protein 34.5 (ICP34.5) and latency-associated transcript (LAT) genes are closely related to virus selective infection and latent infection. Their engineering is essential for constructing efficient and safe oHSV. We summarized the mechanisms of ICP34.5 and LAT in the course of HSV-1 infection and reviewed the engineered oHSVs. We are aimed to provide an insight in developing oHSV in the future.

References

[1]  Salgado, R., Moore, H., Martens, J.W.M., et al. (2018) Steps Forward for Cancer Precision Medicine. Nature Reviews Drug Discovery, 17, 1-2.
https://doi.org/10.1038/nrd.2017.218
[2]  Liu, D. (2019) CAR-T “the Living Drugs”, Immune Checkpoint Inhibitors, and Precision Medicine: A New Era of Cancer Therapy. Journal of Hematology & Oncology, 12, 113.
https://doi.org/10.1186/s13045-019-0819-1
[3]  Wang, D., Wang, X.W., Peng, X.C., et al. (2018) CRISPR/Cas9 Genome Editing Technology Significantly Accelerated Herpes Simplex Virus Research. Cancer Gene Therapy, 25, 93-105.
https://doi.org/10.1038/s41417-018-0016-3
[4]  Bommareddy, P.K., Shettigar, M. and Kaufman, H.L. (2018) Integrating Oncolytic Viruses in Combination Cancer Immunotherapy. Nature Reviews Immunology, 18, 498-513.
https://doi.org/10.1038/s41577-018-0014-6
[5]  Wertheim, J.O., Smith, M.D., Smith, D.M., et al. (2014) Evolutionary Origins of Human Herpes Simplex Viruses 1 and 2. Molecular Biology and Evolution, 31, 2356-2364.
https://doi.org/10.1093/molbev/msu185
[6]  Lawler, S.E. and Chiocca, E.A. (2015) Oncolytic Virus-Mediated Immunotherapy: A Combinatorial Approach for Cancer Treatment. Journal of Clinical Oncology, 33, 2812-2814.
https://doi.org/10.1200/JCO.2015.62.5244
[7]  Peters, C. and Rabkin, S.D. (2015) Designing Herpes Viruses as Oncolytics. Molecular Therapy—Oncolytics, 2, Article No. 15010.
https://doi.org/10.1038/mto.2015.10
[8]  Kaufman, H.L., Kohlhapp, F.J. and Zloza, A. (2015) Oncolytic Viruses: A New Class of Immunotherapy Drugs. Nature Reviews Drug Discovery, 14, 642-662.
https://doi.org/10.1038/nrd4663
[9]  Yoo, J.Y., Swanner, J., Otani, Y., et al. (2019) Oncolytic HSV Therapy Increases Trametinib Access to Brain Tumors and Sensitizes Them in Vivo. Neuro-Oncology, 21, 1131-1140.
https://doi.org/10.1093/neuonc/noz079
[10]  Lazear, E., Whitbeck, J.C., Zuo, Y., et al. (2014) Induction of Conformational Changes at the N-Terminus of Herpes Simplex Virus Glycoprotein D upon Binding to HVEM and Nectin-1. Virology, 448, 185-195.
https://doi.org/10.1016/j.virol.2013.10.019
[11]  Zhang, Y., Xin, Q., Zhang, J.Y., et al. (2020) Transcriptional Regulation of Latency-Associated Transcripts (LATs) of Herpes Simplex Viruses. Journal of Cancer, 11, 3387-3399.
https://doi.org/10.7150/jca.40186
[12]  Samoto, K., Ehtesham, M., Perng, G.C., et al. (2002) A Herpes Simplex Virus Type 1 Mutant with Gamma 34.5 and LAT Deletions Effectively Oncolyses Human U87 Glioblastomas in Nude Mice. Neurosurgery, 50, 599-605.
https://doi.org/10.1227/00006123-200203000-00031
[13]  Henderson, G., Jaber, T., Carpenter, D., et al. (2009) Identification of Herpes Simplex Virus Type 1 Proteins Encoded within the First 1.5 kb of the Latency-Associated Transcript. Journal of NeuroVirology, 15, 439-448.
https://doi.org/10.3109/13550280903296353
[14]  Radtke, K., English, L., Rondeau, C., et al. (2013) Inhibition of the Host Translation Shutoff Response by Herpes Simplex Virus 1 Triggers Nuclear Envelope-Derived Autophagy. Journal of Virology, 87, 3990-3997.
https://doi.org/10.1128/JVI.02974-12
[15]  Christensen, M.H., Jensen, S.B., Miettinen, J.J., et al. (2016) HSV-1 ICP27 Targets the TBK1-Activated STING Signalsome to Inhibit Virus-Induced Type I IFN Expression. The EMBO Journal, 35, 1385-1399.
https://doi.org/10.15252/embj.201593458
[16]  Meng, W., Han, S.C., Li, C.C., et al. (2018) Multifunctional Viral Protein Gamma34.5 Manipulates Nucleolar Protein NOP53 for Optimal Viral Replication of HSV-1. Cell Death & Differentiation, 9, 103.
https://doi.org/10.1038/s41419-017-0116-2
[17]  Chen, X., Zhou, Y., Wang, J., et al. (2015) Dual Silencing of Bcl-2 and Survivin by HSV-1 Vector Shows Better Antitumor Efficacy in Higher PKR Phosphorylation Tumor Cells in Vitro and in Vivo. Cancer Gene Therapy, 22, 380-386.
https://doi.org/10.1038/cgt.2015.30
[18]  La Rosa, F., Agostini, S., Bianchi, A., et al. (2019) Herpes Simplex Virus-1 (HSV-1) Infection Induces a Potent But Ineffective IFN-Lambda Production in Immune Cells of AD and PD Patients. Journal of Translational Medicine, 17, 286.
https://doi.org/10.1186/s12967-019-2034-9
[19]  Wilcox, D.R. and Longnecker, R. (2016) The Herpes Simplex Virus Neurovirulence Factor Gamma34.5: Revealing Virus-Host Interactions. PLOS Pathogens, 12, e1005449.
https://doi.org/10.1371/journal.ppat.1005449
[20]  Rosato, P.C. and Leib, D.A. (2015) Neuronal Interferon Signaling Is Required for Protection against Herpes Simplex Virus Replication and Pathogenesis. PLOS Pathogens, 11, e1005028.
https://doi.org/10.1371/journal.ppat.1005028
[21]  Larsen, I.S. (1974) Study Days in Uppsala: Teaching Aspects in Health and Sickness Care with Reference to Clinical Training. Sygeplejersken, 74, 24-27.
[22]  Tang, S., Bertke, A.S., Patel, A., et al. (2008) An Acutely and Latently Expressed Herpes Simplex Virus 2 Viral microRNA Inhibits Expression of ICP34.5, a Viral Neurovirulence Factor. Proceedings of the National Academy of Sciences of the United States of America, 105, 10931-10936.
https://doi.org/10.1073/pnas.0801845105
[23]  Watson, Z.L., Washington, S.D., Phelan, D.M., et al. (2018) In Vivo Knockdown of the Herpes Simplex Virus 1 Latency-Associated Transcript Reduces Reactivation from Latency. Journal of Virology, 92, e00812-18.
https://doi.org/10.1128/JVI.00812-18
[24]  Nicoll, M.P., Hann, W., Shivkumar, M., et al. (2016) The HSV-1 Latency-Associated Transcript Functions to Repress Latent Phase Lytic Gene Expression and Suppress Virus Reactivation from Latently Infected Neurons. PLOS Pathogens, 12, e1005539.
https://doi.org/10.1371/journal.ppat.1005539
[25]  Ahmed, M., Lock, M., Miller, C.G., et al. (2002) Regions of the Herpes Simplex Virus Type 1 Latency-Associated Transcript That Protect Cells from Apoptosis in Vitro and Protect Neuronal Cells in Vivo. Journal of Virology, 76, 717-729.
https://doi.org/10.1128/JVI.76.2.717-729.2002
[26]  Umbach, J.L., Kramer, M.F., Jurak, I., et al. (2008) MicroRNAs Expressed by Herpes Simplex Virus 1 during Latent Infection Regulate Viral mRNAs. Nature, 454, 780-783.
https://doi.org/10.1038/nature07103
[27]  Gupta, A., Gartner, J.J., Sethupathy, P., et al. (2006) Anti-Apoptotic Function of a microRNA Encoded by the HSV-1 Latency-Associated Transcript. Nature, 442, 82-85.
https://doi.org/10.1038/nature04836
[28]  Hamza, M.A., Higgins, D.M. and Ruyechan, W.T. (2006) Herpes Simplex Virus Type-1 Latency Inhibits Dendritic Growth in Sympathetic Neurons. Neurobiology of Disease, 24, 367-373.
https://doi.org/10.1016/j.nbd.2006.07.011
[29]  Thomas, S., Kuncheria, L., Roulstone, V., et al. (2019) Development of a New Fusion-Enhanced Oncolytic Immunotherapy Platform Based on Herpes Simplex Virus Type 1. Journal for ImmunoTherapy of Cancer, 7, 214.
https://doi.org/10.1186/s40425-019-0682-1
[30]  Eissa, I.R., Naoe, Y., Bustos-Villalobos, I., et al. (2017) Genomic Signature of the Natural Oncolytic Herpes Simplex Virus HF10 and Its Therapeutic Role in Preclinical and Clinical Trials. Frontiers in Oncology, 7, 149.
https://doi.org/10.3389/fonc.2017.00149
[31]  Perng, G.C., Dunkel, E.C., Geary, P.A., et al. (1994) The Latency-Associated Transcript Gene of Herpes Simplex Virus Type 1 (HSV-1) Is Required for Efficient in Vivo Spontaneous Reactivation of HSV-1 from Latency. Journal of Virology, 68, 8045-8055.
https://doi.org/10.1128/JVI.68.12.8045-8055.1994
[32]  Whisnant, A.W., Jurges, C.S., Hennig, T., et al. (2020) Integrative Functional Genomics Decodes Herpes Simplex Virus 1. Nature Communications, 11, 2038.
https://doi.org/10.1038/s41467-020-15992-5
[33]  Nakashima, H., Nguyen, T., Kasai, K., et al. (2018) Toxicity and Efficacy of a Novel GADD34-Expressing Oncolytic HSV-1 for the Treatment of Experimental Glioblastoma. Clinical Cancer Research, 24, 2574-2584.
https://doi.org/10.1158/1078-0432.CCR-17-2954
[34]  Bernstock, J.D., Vicario, N., Li, R., et al. (2020) Safety and Efficacy of Oncolytic HSV-1 G207 Inoculated into the Cerebellum of Mice. Cancer Gene Therapy, 27, 246-255.
https://doi.org/10.1038/s41417-019-0091-0
[35]  Todo, T., Martuza, R.L., Rabkin, S.D., et al. (2001) Oncolytic Herpes Simplex Virus Vector with Enhanced MHC Class I Presentation and Tumor Cell Killing. Proceedings of the National Academy of Sciences of the United States of America, 98, 6396-6401.
https://doi.org/10.1073/pnas.101136398
[36]  Kelly, K.J., Wong, J. and Fong, Y. (2008) Herpes Simplex Virus NV1020 as a Novel and Promising Therapy for Hepatic Malignancy. Expert Opinion on Investigational Drugs, 17, 1105-1113.
https://doi.org/10.1517/13543784.17.7.1105
[37]  Patel, D.M., Foreman, P.M., Nabors, L.B., et al. (2016) Design of a Phase I Clinical Trial to Evaluate M032, a Genetically Engineered HSV-1 Expressing IL-12, in Patients with Recurrent/Progressive Glioblastoma Multiforme, Anaplastic Astrocytoma, or Gliosarcoma. Human Gene Therapy Clinical Development, 27, 69-78.
https://doi.org/10.1089/humc.2016.031
[38]  Maclean, A.R., Ul-Fareed, M., Robertson, L., et al. (1991) Herpes Simplex Virus Type 1 Deletion Variants 1714 and 1716 Pinpoint Neurovirulence-Related Sequences in Glasgow Strain 17+ between Immediate Early Gene 1 and the “a” Sequence. Journal of General Virology, 72, 631-639.
https://doi.org/10.1099/0022-1317-72-3-631
[39]  Andtbacka, R.H., Kaufman, H.L., Collichio, F., et al. (2015) Talimogene Laherparepvec Improves Durable Response Rate in Patients with Advanced Melanoma. Journal of Clinical Oncology, 33, 2780-2788.
https://doi.org/10.1200/JCO.2014.58.3377
[40]  Ren, J., Gwin, W.R., Zhou, X., et al. (2017) Adaptive T Cell Responses Induced by Oncolytic Herpes Simplex Virus-Granulocyte Macrophage-Colony-Stimulating Factor Therapy Expanded by Dendritic Cell and Cytokine-Induced Killer Cell Adoptive Therapy. Oncoimmunology, 6, e1264563.
https://doi.org/10.1080/2162402X.2016.1264563
[41]  Tanaka, R., Goshima, F., Esaki, S., et al. (2017) The Efficacy of Combination Therapy with Oncolytic Herpes Simplex Virus HF10 and Dacarbazine in a Mouse Melanoma Model. American Journal of Cancer Research, 7, 1693-1703.
[42]  Wang, Y.Y., Lyu, Y.N., Xin, H.Y., et al. (2019) Identification of Putative UL54 (ICP27) Transcription Regulatory Sequences Binding to Oct-1, v-Myb, Pax-6 and Hairy in Herpes Simplex Viruses. Journal of Cancer, 10, 430-440.
https://doi.org/10.7150/jca.29787
[43]  Liu, X.Q., Xin, H.Y., Lyu, Y.N., et al. (2018) Oncolytic Herpes Simplex Virus Tumor Targeting and Neutralization Escape by Engineering Viral Envelope Glycoproteins. Drug Delivery, 25, 1950-1962.
https://doi.org/10.1080/10717544.2018.1534895
[44]  Cheng, J.T., Wang, Y.Y., Zhu, L.Z., et al. (2020) Novel Transcription Regulatory Sequences and Factors of the Immune Evasion Protein ICP47 (US12) of Herpes Simplex Viruses. Virology Journal, 17, 101.
https://doi.org/10.1186/s12985-020-01365-3
[45]  Goins, W.F., Huang, S., Hall, B., et al. (2020) Engineering HSV-1 Vectors for Gene Therapy. Methods in Molecular Biology, 2060, 73-90.
https://doi.org/10.1007/978-1-4939-9814-2_4
[46]  Kanai, R., Zaupa, C., Sgubin, D., et al. (2012) Effect of Gamma34.5 Deletions on Oncolytic Herpes Simplex Virus Activity in Brain Tumors. Journal of Virology, 86, 4420-4431.
https://doi.org/10.1128/JVI.00017-12
[47]  Arias, C., Weisburd, B., Stern-Ginossar, N., et al. (2014) KSHV 2.0: A Comprehensive Annotation of the Kaposi’s Sarcoma-Associated Herpesvirus Genome Using Next-Generation Sequencing Reveals Novel Genomic and Functional Features. PLOS Pathogens, 10, e1003847.
https://doi.org/10.1371/journal.ppat.1003847
[48]  Erhard, F., Halenius, A., Zimmermann, C., et al. (2018) Improved Ribo-seq Enables Identification of Cryptic Translation Events. Nature Methods, 15, 363-366.
https://doi.org/10.1038/nmeth.4631
[49]  Kanerva, A., Nokisalmi, P., Diaconu, I., et al. (2013) Antiviral and Antitumor T-Cell Immunity in Patients Treated with GM-CSF-Coding Oncolytic Adenovirus. Clinical Cancer Research, 19, 2734-2744.
https://doi.org/10.1158/1078-0432.CCR-12-2546
[50]  Patel, M.R. and Kratzke, R.A. (2013) Oncolytic Virus Therapy for Cancer: The First Wave of Translational Clinical Trials. Translational Research, 161, 355-364.
https://doi.org/10.1016/j.trsl.2012.12.010
[51]  Forbes, N.E., Abdelbary, H., Lupien, M., et al. (2013) Exploiting Tumor Epigenetics to Improve Oncolytic Virotherapy. Frontiers in Genetics, 4, 184.
https://doi.org/10.3389/fgene.2013.00184

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413