全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面对极端天气事件的能源枢纽微网两阶段优化运行研究
Research on Two-Stage Optimization Operation of Micro Grid of Energy Hub Facing Extreme Weather Events

DOI: 10.12677/AEPE.2021.92010, PP. 85-100

Keywords: 能源枢纽,能源枢纽微网,多能源系统,冷热电联产,弹性,运行优化
Energy Hub
, Micro Grid of Energy Hub, Multi-Energy System, Combined Cool, Heat and Power, Resilience, Optimal Operation

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,气候变化导致了越来越多的极端天气事件,这些自然灾害可能会引起严重的基础设施破坏,甚至引发大规模停电事故。这促使人们开始综合利用各类能源,以提高能源系统在应对小概率、大破坏性极端天气事件时的修复力。本文提出了一种应对极端天气事件的能源枢纽微网优化运行模型和一种两阶段优化运行模式。这种运行模式通过对单个能源枢纽及能源枢纽微网内能量的购买、传输和存储进行优化,并对负荷设置优先级,能减少两个阶段的总运行成本和负荷削减量,从而提高微网系统应对极端天气事件的弹性。本文算例在MATLAB R2018a环境下运行,使用YALMIP工具包和GUROBI求解器进行求解。仿真结果表明,本文提出的能源枢纽微网模型和两阶段运行模式,可以大大提升能源系统的稳定性和弹性,增强其抵御极端天气事件的能力。
Climate change has led to an increasing number of extreme weather events in recent years. These natural disasters can cause serious infrastructure damages and even trigger massive power outages. This situation has led to a combination of energy sources to improve the resilience of the energy system in the face of low probability, highly destructive extreme weather events. This paper pro-poses an optimal operation model and a two-stage optimal operation model for energy hub mi-crogrid to cope with extreme weather events. This operation mode improves the resilience of the microgrid system to extreme weather events by optimizing the purchase, transmission, and storage of energy both within a single energy hub and a energy hub microgrid. By setting the load priority, total operating cost and load cutting value can be effectively reduced. Case studies are run in Matlab R2018a environment and solved by YALMIP toolbox and GUROBI solver. The simulation results show that the proposed microgrid model and the two-stage optimal operation mode can greatly improve the stability and resilience of the energy system, and enhance its ability to resist extreme weather events.

References

[1]  Krause, T., Andersson, G., Fr?hlich, K. and Vaccaro, A. (2011) Multiple-Energy Carriers: Modeling of Production, De-livery, and Consumption. Proceedings of the IEEE, 99, 15-27.
https://doi.org/10.1109/JPROC.2010.2083610
[2]  李洋, 吴鸣, 周海明, 王伟亮, 王丹, 葛磊蛟. 基于全能流模型的区域多能源系统若干问题探讨[J]. 电网技术, 2015, 39(8): 2230-2237.
[3]  Lu, J., Zeng, M., Zeng, X., Fang, Z. and Yuan, J. (2015) Analysis of Ice-Covering Char-acteristics of China Hunan Power Grid. IEEE Transactions on Industry Applications, 51, 1997-2002.
https://doi.org/10.1109/TIA.2014.2365295
[4]  Jiang, X., Zhao, S., Hu, J., Zhang, Z. and Shu, L. (2013) Study of DC Flashover Performance of Ice-Covered Insulators at High Altitude. IEEE Transactions on Dielectrics and Electrical Insulation, 20, 391-400.
https://doi.org/10.1109/TDEI.2013.6508739
[5]  徐宪东, 贾宏杰, 靳小龙, 余晓丹, 穆云飞. 区域综合能源系统电/气/热混合潮流算法研究[J]. 中国电机工程学报, 2015, 35(14): 3634-3642.
[6]  Alstone, P., Gershenson, D. and Kammen, D.M. (2015) Decentralized Energy Systems for Clean Electricity Access. Nature Climate Change, 5, 305-314.
https://doi.org/10.1038/nclimate2512
[7]  Zhang, X., Karady, G.G. and Ariaratnam, S.T. (2013) Optimal Allocation of CHP-Based Distributed Generation on Urban Energy Distribution Networks. IEEE Transactions on Sus-tainable Energy, 5, 246-253.
https://doi.org/10.1109/TSTE.2013.2278693
[8]  Saldarriaga, C.A., Hincapié, R.A. and Salazar, H. (2013) A Ho-listic Approach for Planning Natural Gas and Electricity Distribution Networks. IEEE Transactions on Power Systems, 28, 4052-4063.
https://doi.org/10.1109/TPWRS.2013.2268859
[9]  Quelhas, A., Gil, E., McCalley, J.D. and Ryan, S.M. (2007) A Multiperiod Generalized Network Flow Model of the U.S. Integrated Energy System: Part I—Model Description. IEEE Transactions on Power Systems, 22, 829-836.
https://doi.org/10.1109/TPWRS.2007.894844
[10]  Geidl, M. (2007) Integrated Modeling and Optimization of Multi-Carrier Energy Systems. Doctoral Thesis, ETH Zürich, Zürich, 143.
https://doi.org/10.3929/ethz-a-005377890
[11]  Favre-Perrod, P., Geidl, M., Kl?ckl, B. and Koeppel, G. (2005) A Vision of Future Energy Networks. 2005 IEEE Power Engineering Society Inaugural Conference and Exposition in Af-rica, Durban, 11-15 July 2005, 13-17.
https://doi.org/10.1109/PESAFR.2005.1611778
[12]  Huang, A. (2010) FREEDM System—A Vision for the Fu-ture Grid. IEEE PES General Meeting, Minneapolis, 25-29 July 2010, 1-4.
https://doi.org/10.1109/PES.2010.5590201
[13]  Geidl, M., Koeppel, G., Favre-Perrod, P., Klockl, B., Andersson, G. and Frohlich, K. (2007) Energy Hubs for the Future. IEEE Power and Energy Magazine, 5, 24-30.
https://doi.org/10.1109/MPAE.2007.264850
[14]  Carradore, L. and Bignucolo, F. (2008) Distributed Mul-ti-Generation and Application of the Energy Hub Concept in Future Networks. 2008 43rd International Universities Power Engineering Conference, Padua, 1-4 September 2008, 1-5.
https://doi.org/10.1109/UPEC.2008.4651593
[15]  Krause, T., Kienzle, F., Liu, Y. and Andersson, G. (2011) Modeling Interconnected National Energy Systems Using an Energy Hub Approach. 2011 IEEE Trondheim PowerTech, Trondheim, 19-23 June 2011, 1-7.
https://doi.org/10.1109/PTC.2011.6019313

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133