全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

同种异体骨与PMMA骨水泥组合物体内生物相容性的研究
Biocompatibility of Allogeneic Bone and PMMA Bone Cement Composition in Vivo Model

DOI: 10.12677/HJS.2021.102005, PP. 26-32

Keywords: 同种异体骨,聚甲基丙烯酸甲酯骨水泥,生物相容性,动物模型
Allogeneic Bone
, Polymethyl Methacrylate Bone Cement, Biocompatibility, Animal Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:通过兔椎骨骨缺损模型体内实验评估该新型组合骨水泥作为椎体填充材料的有效性和可行性。方法:将72只兔椎骨骨缺损模型随机分为三组:聚甲基丙烯酸甲酯(PMMA)组,实验(组合物)组和空白对照组。PMMA和实验组分别使用PMMA骨水泥和组合物填充。术后4、8、12周时处死动物。在每个时间点进行微型CT分析,生物力学测试和组织学分析。结果:从植入填充物后4~12周,实验组填充物有效强化兔椎骨与PMMA组无明显差异(P > 0.05),同时通过微CT及组织学观察发现实验组填充的组合物周围骨小梁生长在三组中最明显(P < 0.05)。结论:同种异体骨与PMMA骨水泥组合物在有效强化骨缺损椎体的同时有促成骨作用,该组合物可以成为椎体填充物有价值的生物材料。
Objective: To evaluate the effectiveness and feasibility of the new composite bone cement as vertebral body filling material by in vivo experiments of rabbit vertebral bone defect model. Methods: 72 rabbit bone defect models were randomly divided into three groups: polymethyl methacrylate (PMMA) group, experimental group and blank control group. PMMA and experimental groups were filled with PMMA cement and composition respectively. Animals were sacrificed at 4, 8, and 12 weeks after operation. Micro CT analysis, biomechanical test and histological analysis were performed at each time point. Results: There was no significant difference between the experimental group and the PMMA group from 4 to 12 weeks after implantation (P>0.05). At the same time, micro CT and histological observation showed that the trabeculae around the composition filled in the experimental group were the most obvious in the three groups (P<0.05). Conclusion: Allogeneic bone and PMMA bone cement composition can effectively strengthen bone defect vertebrae and promote bone action. The composition can be used as valuable biomaterial for vertebral body filler.

References

[1]  Song, W., Seta, J., Eichler, M.K., et al. (2018) Comparison of in Vitro Biocompatibility of Silicone and Polymethyl-methacrylate during the Curing Phase of Polymerization. Journal of Biomedical Materials Research Part B: Applied Bi-omaterials, 106, 2693-2699.
https://doi.org/10.1002/jbm.b.34086
[2]  Arora, M., Chan, E.K., Gupta, S., et al. (2013) Polymethylmethacrylate Bone Cements and Additives: A Review of the Literature. World Journal of Orthopedics, 4, 67-74.
https://doi.org/10.5312/wjo.v4.i2.67
[3]  Ridwan-Pramana, A., Idema, S., Te Slaa, S., et al. (2019) Polymethylmethacrylate in Patient-Specific Implants: Description of a New Three-Dimension Technique. The Journal of Craniofacial Surgery, 30, 408-411.
https://doi.org/10.1097/SCS.0000000000005148
[4]  Wang, B., Lin, Q., Shen, C., et al. (2014) Hydrophobic Modification of Polymethylmethacrylate as Intraocular Lenses Material to Improve the Cytocompatibility. Journal of Colloid and Interface Science, 431, 1-7.
https://doi.org/10.1016/j.jcis.2014.05.056
[5]  Le Ferrec, M., Mellier, C., Boukhechba, F., et al. (2018) Design and Properties of a Novel Radiopaque Injectable Apatitic Calcium Phosphate Cement, Suitable for Image-Guided Implantation. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106, 2786-2795.
https://doi.org/10.1002/jbm.b.34059
[6]  Meng, H.S., Chen, C., Yan, Z.R., et al. (2019) Co-Doping Polymethyl-methacrylate and Copper Tailings to Improve the Performances of Sludge-Derived Particle Electrode. Water Research, 165, Article ID: 115016.
https://doi.org/10.1016/j.watres.2019.115016
[7]  Darwish, G., Huang, S., Knoernschild, K., et al. (2019) Im-proving Polymethylmethacrylate Resin Using a Novel Titanium Dioxide Coating. Journal of Prosthodontics: Official Journal of the American College of Prosthodontists, 28, 1011-1017.
https://doi.org/10.1111/jopr.13032
[8]  Wang, Z.K., Li, Z.X., Zhang, X.S., et al. (2021) A Bone Substitute Composed of Polymethyl-Methacrylate Bone Cement and Bio-Gene Allogeneic Bone Promotes Osteoblast Viability, Adhesion and Differentiation. Bio-Medical Materials and En-gineering, 32, 29-37.
https://doi.org/10.3233/BME-201139
[9]  胡蕴玉. 骨库的建立与管理[J]. 中华骨科杂志, 1995, 15(1): 54-56.
[10]  Liu, J.H., Mao, K.Z., Liu, Z.S., et al. (2013) Injectable Biocomposites for Bone Healing in Rabbit Femoral Condyle Defects. PLoS ONE, 8, e75668.
https://doi.org/10.1371/journal.pone.0075668
[11]  Chen, L.H., Lai, P.L. and Chen, W.J. (2011) Current Status of Vertebroplasty for Osteoporotic Compression Fracture. Chang Gung Medical Journal, 34, 352-359.
[12]  Boger, A., Bisig, A., Bohner, M., et al. (2008) Variation of the Mechanical Properties of PMMA to Suit Osteoporotic Cancellous Bone. Journal of Biomaterials Science, Polymer Edition, 19, 1125-1142.
https://doi.org/10.1163/156856208785540154
[13]  Heo, D.H., Chin, D.K., Yoon, Y.S., et al. (2009) Recollapse of Previous Vertebral Compression Fracture after Percutaneous Vertebroplasty. Osteoporosis International, 20, 473-480.
https://doi.org/10.1007/s00198-008-0682-3
[14]  Urrutia, J., Mery, P. and Rojas, C. (2008) Early Histologic Changes Following Polymethylmethacrylate Injection (Vertebroplasty) in Rabbit Lumbar Vertebrae. Spine, 8, 877-882.
https://doi.org/10.1097/BRS.0b013e31816b46a5
[15]  Medeiros, C.C., Borghetti, R.L., Nicoletti, N., et al. (2014) Polymethylmethacrylate Dermal Fillers: Evaluation of the Systemic Toxicity in Rats. International Journal of Oral and Maxillofacial Surgery, 43, 62-67.
https://doi.org/10.1016/j.ijom.2013.06.009
[16]  李明东, 裴国献, 奚廷斐, 等. 冻干同种异体骨粉与人淋巴细胞共培养时对细胞的影响[J]. 中国组织工程研究与临床康复, 2009, 13(8): 1517-1520.
[17]  李明东, 奚延斐, 金丹, 等. 冻干同种异体骨的免疫原性评价及免疫实验动物模型的选择[J]. 中华创伤骨科杂志, 2009, 11(7): 671-674.
[18]  Hautamaki, M., Meretoja, V.V., Mattila, R.H., Aho, A.J. and Vallittu, P.K. (2010) Osteoblast Response to Polymethylmethacrylate Bioactive Glass Composite. Journal of Materials Science: Materials in Medicine, 21, 1685-1692.
https://doi.org/10.1007/s10856-010-4018-4

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133