全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Smart Grid  2021 

直流GIS/GIL中电荷诱发的固气界面闪络研究综述:试验与模型
Review of Charge Induced Solid-Gas Interface Flashover in DC GIS/GIL: Experiments and Models

DOI: 10.12677/SG.2021.112013, PP. 130-139

Keywords: 表面电荷,沿面闪络,直流输电,GIL,GIS
Surface Charge
, Surface Flashover, HVDC, GIL, GIS

Full-Text   Cite this paper   Add to My Lib

Abstract:

直流GIL/GIS绝缘子表面电荷积聚诱发的沿面闪络问题是制约其工程应用的关键,而电荷诱发闪络的物理机制尚不明晰。本文对近20年直流电压下GIL/GIS绝缘子表面电荷对固–气界面闪络性能的影响及机理研究进行了梳理。首先以切向主导型与混合型电场分布对应的电荷积聚模式为分类标准,归纳了固–气界面闪络电压的影响因素,并分析了金属微粒等设备缺陷所导致的电荷积聚对沿面闪络的影响;重点总结了表面电荷诱发沿面闪络现象的物理机制及理论模型;最后,对直流电压下固–气界面电荷积聚与沿面闪络关联机制研究的关键问题和未来挑战进行了展望。
For DC GIL/GIS, the surface flashover induced by insulator surface charge accumulation has become the critical problem restricting its engineering application. However the physical mechanism of charge-induced flashover is unclear. This paper reviews the influence and method of insulator surface charge on the flashover performance of solid-gas interface under DC voltage in the last 20 years. Firstly, the influence factors of flashover voltage are summarized according to the charge accumulation mode corresponding to the distribution of the tangential component-dominant electricfield and the hybrid electric field, and the influence of charge accumulation caused by metal particles on surface flashover is analyzed. Then, the physical mechanism and theoretical model of surface charge inducing flashover are summarized. Finally, the key issues and future challenges of the research on the correlation between surface charge accumulation and surface flashover under DC voltage are prospected.

References

[1]  Li, C., Xu, Y., Lin, C., Chen, G., Tu, Y., Zhou, Y., Lei, Z., Han, T., Suraci, S.V. and Wang, J. (2019) Surface Charging Phenomena on HVDC Spacers for Compressed SF6 Insulation and Charge Tailoring Strategies. CSEE Journal of Power and Energy Systems, 6, 83-99.
[2]  Hama, H., Hikosaka, T., Okabe, S., et al. (2007) Cross-Equipment Study on Charging Phenomena of Solid Insulators in High Voltage Equipment. IEEE Transactions on Dielectrics & Electrical Insulation, 14, 508-519.
https://doi.org/10.1109/TDEI.2007.344633
[3]  范建斌, 李鹏, 李金忠, 汤浩, 张乔根, 吴广宁. ±800kV特高压直流GIL关键技术研究[J]. 中国电机工程学报, 2008(13): 1-7.
[4]  Geng, J.H. (2009) Research on the Influence of Surface Accumulation Charge on Flashover Voltage of Ceramic Insulator. International Conference on Electronics Engineering and Technology, Guilin, 16-18 October 2009, 244-246.
https://doi.org/10.1109/ICEET.2009.297
[5]  邢照亮. GIS绝缘子表面电荷分布对沿面闪络的影响[D]: [硕士学位论文]. 北京: 华北电力大学, 2013.
[6]  邓军波, 薛建议, 张冠军, 韩彦华, 蒲路, 熊田亚纪子. SF6/N2混合气体中沿面放电实验研究的现状与进展[J]. 高电压技术, 2016, 42(4): 1190-1198.
[7]  朱时阳, 邓雨荣, 兰国良. 一起GIS盆式绝缘子闪络事故的分析[J]. 电气应用, 2009, 28(13): 38-39+83.
[8]  齐波, 高春嘉, 赵林杰, 李成榕, 屠幼萍. 交/直流电压下气体绝缘变电站盆式绝缘子表面电荷对闪络电压的影响[J]. 高电压技术, 2017, 43(3): 915-922.
[9]  Zhang, L., Lin, C., Li, C., et al. (2020) Gas-Solid Interface Charge Characterisation Techniques for HVDC GIS/GIL Insulators. High Voltage Engineering, 5, 95-109.
https://doi.org/10.1049/hve.2019.0289
[10]  张子, 张周胜, 邓保家, 晏武, 李秋烨. 直流GIL绝缘子表面电荷研究现状与展望[J]. 绝缘材料, 2019, 52(6): 1-7.
[11]  齐波, 张贵新, 李成榕, 高春嘉, 张博雅, 陈铮铮. 气体绝缘金属封闭输电线路的研究现状及应用前景[J]. 高电压技术, 2015, 41(5): 1466-1473.
[12]  张贵新, 张博雅, 王强, 李金忠. 高压直流GIL中盆式绝缘子表面电荷积聚与消散的实验研究[J]. 高电压技术, 2015, 41(5): 1430-1436.
[13]  Li, C., Hu, J., Lin, C. and He, J. (2016) The Control Mechanism of Surface Traps on Surface Charge Behavior in Alumina-Filled Epoxy Composites. Journal of Physics D: Applied Physics, 49, Article ID: 445304.
https://doi.org/10.1088/0022-3727/49/44/445304
[14]  Li, C., Lin, C., Chen, G., Tu, Y., Zhou, Y., Li, Q., Zhang, B. and He, J. (2019) Field-Dependent Charging Phenomenon of HVDC Spacers Based on Dominant Charge Behaviors. Applied Physics Letters, 114, Article ID: 202904.
https://doi.org/10.1063/1.5096228
[15]  Tu, Y., Chen, G., Wang, C., Tong, Y., Li, C., Ma, G. and Shahsavarian, T. (2020) Feasibility of C3F7CN/CO2 Gas Mixtures in HVDC GIL: A Review on Recent Advances. High Voltage Engineering, 5, 377-386.
https://doi.org/10.1049/hve.2020.0083
[16]  Chen, G., Tu, Y., Wu, S., Lin, C., Qin, S., Li, C. and He, J. (2020) Intrinsic Hetero-Polar Surface Charge Phenomenon in Environmental Friendly C3F7CN/CO2 Gas Mixture. Journal of Physics D: Applied Physics, 53, 18LT03.
https://doi.org/10.1088/1361-6463/ab7565
[17]  Zhou, H.Y., Ma, G.M., Li, C.R., et al. (2017) Impact of Temperature on Surface Charges Accumulation on Insulators in SF6-Filled DC-GIL. IEEE Transactions on Dielectrics and Electrical Insulation, 24, 601-610.
https://doi.org/10.1109/TDEI.2016.005838
[18]  Tu, Y., Zhou, F., Jiang, H., et al. (2018) Effect of Nano-TiO2/EP Composite Coating on Dynamic Characteristics of Surface Charge in Epoxy Resin. IEEE Transactions on Dielectrics and Electrical Insulation, 25, 1308-1317.
https://doi.org/10.1109/TDEI.2018.007149
[19]  Li, C., Lin, C., Zhang, B., et al. (2018) Understanding Surface Charge Accumulation and Surface Flashover on Spacers in Compressed Gas Insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 25, 1152-1166.
https://doi.org/10.1109/TDEI.2018.007004
[20]  高宇, 王明行, 赵宁, 李子逸, 杜伯学. 固体绝缘材料表面电荷特性的研究进展[J]. 高电压技术, 2018, 44(8): 2628-2645.
[21]  Lin, C., Xu, Y., Chen, G., et al. (2020) Luminescence Reveals Micro Discharge Triggered Surface Flashover. Journal of Physics D Applied Physics, 53, Article ID: 445103.
https://doi.org/10.1088/1361-6463/aba3ed
[22]  律方成, 边亚琳, 詹振宇, 金潮伟, 李志兵, 刘伟. 环保气体下灰尘对环氧树脂闪络特性的影响[J]. 高电压技术, 2020, 46(4): 1319-1327.
[23]  Kumara, S., Alam, S., Hoque, I.R., et al. (2012) DC Flashover Characteristics of a Polymeric Insulator in Presence of Surface Charges. IEEE Transactions on Dielectrics and Electrical Insulation, 19, 1084-1090.
https://doi.org/10.1109/TDEI.2012.6215116
[24]  Kumara, S., Hoque, I.R., Alam, S., et al. (2012) Surface Charges on Cylindrical Polymeric Insulators. IEEE Transactions on Dielectrics and Electrical Insulation, 19, 1076-1083.
https://doi.org/10.1109/TDEI.2012.6215115
[25]  Mahmoodi, J., Mirzaie, M. and Akmal, A.S. (2018) Contribution of Surface Charges on High-Voltage DC Silicon Rubber Insulators to DC Flashover Performance. IET Generation, Transmission & Distribution, 12, 5851-5857.
https://doi.org/10.1049/iet-gtd.2018.6417
[26]  Lin, C., Li, Q., Li, C., Zhang, B., Liu, W., Yang, Y., Liu, F., Liu, X., Hu, J. and He, J. (2018) Novel HVDC Spacers by Adaptively Controlling Surface Charges—Part III: Industrialization Prospects. IEEE Transactions on Dielectrics and Electrical Insulation, 25, 1259-1266.
https://doi.org/10.1109/TDEI.2018.007555
[27]  Li, C., Liu, B., Wang, J., et al. (2019) Novel HVDC Spacers in GIS/GIL by Adaptively Controlling Surface Charges-Insulation Compounding Scheme. 2019 2nd International Conference on High Voltage Engineering and Power Systems (ICHVEPS) IEEE, Denpasar, 1-4 October 2019, 268-271.
https://doi.org/10.1109/ICHVEPS47643.2019.9011050
[28]  Wang, T.Y., Zhang, B.Y., Li, D.Y., et al. (2020) Metal Nanoparticle-Doped Epoxy Resin to Suppress Surface Charge Accumulation on Insulators under DC Voltage. Nanotechnology, 31, Article ID: 324001.
https://doi.org/10.1088/1361-6528/ab8b91
[29]  Li, C., Lin, C., Hu, J., Liu, W., Li, Q., Zhang, B., He, S., Yang, Y., Liu, F. and He, J. (2018) Novel HVDC Spacers by Adaptively Controlling Surface Charges—Part I: Charge Transport and Control Strategy. IEEE Transactions on Dielectrics and Electrical Insulation, 25, 1238-1247.
https://doi.org/10.1109/TDEI.2018.007054
[30]  Li, C., Lin, C., Yang, Y., Zhang, B., Liu, W., Li, Q., Hu, J., He, S., Liu, X. and He, J. (2018) Novel HVDC Spacers by Adaptively Controlling Surface Charges—Part II: Experiment. IEEE Transactions on Dielectrics and Electrical Insulation, 25, 1248-1258.
https://doi.org/10.1109/TDEI.2018.007056
[31]  刘琳, 李晓昂, 张乔根, 梁成军, 李志兵. 沿面电场对GIS绝缘子闪络电压的影响[J]. 高电压技术, 2020, 46(8): 2906-2913.
[32]  Winter, A. and Kindersberger, J. (2002) Surface Charge Accumulation on Insulating Plates in SF6 and the Effect on DC and AC Breakdown Voltage of Electrode Arrangements. Annual Report Conference on Electrical Insulation and Dielectric Phenomena IEEE, West Lafayette, 17-20 October 2010, 757-761.
[33]  Liu, Y.Q., Wu, G.N., Gao, G.Q., et al. (2019) Surface Charge Accumulation Behavior and Its Influence on Surface Flashover Performance of Al2O3-Filled Epoxy Resin Insulators under DC Voltages. Plasma Science and Technology, 21, Article ID: 055501.
https://doi.org/10.1088/2058-6272/aafdf7
[34]  Gao, Y., Wang, M., Zhao, N., et al. (2018) Surface Charge Distribution Measurement before and after DC Flashover: A Novel Insight to the Influence of Surface Charge on Flashover Voltage. 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, 10-13 September 2018, 1-4.
https://doi.org/10.1109/ICHVE.2018.8642199
[35]  Shao, T., Kong, F., Lin, H., et al. (2018) Correlation between Surface Charge and DC Surface Flashover of Plasma Treated Epoxy Resin. IEEE Transactions on Dielectrics and Electrical Insulation, 25, 1267-1274.
https://doi.org/10.1109/TDEI.2017.007132
[36]  Wang, M.H., Gao, Y., Li, Z.Y., et al. (2018) Effect of Coating on Surface Charge Accumulation and DC Flashover of Epoxy/Al2O3 Nanocomposites. 2018 IEEE 2nd International Conference on Dielectrics (ICD), Budapest, 1-5 July 2018, 1-4.
https://doi.org/10.1109/ICD.2018.8514778
[37]  Li, C., Hu, J., Lin, C., Zhang, B., Zhang, G. and He, J. (2017) Surface Charge Migration and DC Surface Flashover of Surface-Modified Epoxy-Based Insulators. Journal of Physics D: Applied Physics, 50, Article ID: 065301.
https://doi.org/10.1088/1361-6463/aa5207
[38]  Du, B.X., Xu, R.R., Jin, L., et al. (2018) Improved Carrier Mobility Dependent Surface Charge am Flashover Voltage of Polypropylene Film under DC and Pulse Voltages. IEEE Transactions on Dielectrics and Electrical Insulation, 25, 1014-1021.
https://doi.org/10.1109/TDEI.2018.006845
[39]  张博雅, 王强, 张贵新, 李金忠. SF6中绝缘子表面电荷积聚及其对直流GIL闪络特性的影响[J]. 高电压技术, 2015, 41(5): 1481-1487.
[40]  Xue, J., Li, Y., Dong, J., et al. (2020) Surface Charge Transport Behavior and Flashover Mechanism on Alumina/Epoxy Spacers Coated by SiC/Epoxy Composites with Varied SiC Particle Size. Journal of Physics D: Applied Physics, 53, Article ID: 155503.
https://doi.org/10.1088/1361-6463/ab6d1a
[41]  Du, B.X., Liang, H.C. and Li, J. (2019) Surface Coating Affecting Charge Distribution and Flashover Voltage of Cone-Type Insulator under DC Stress. IEEE Transactions on Dielectrics and Electrical Insulation, 26, 706-713.
https://doi.org/10.1109/TDEI.2019.8726015
[42]  Zhao, J., An, Z., Lv, B., et al. (2020) Characteristics of the Partial Discharge in the Development of Conductive Particle-Initiated Flashover of A GIS Insulator. Energies, 13, 2481.
https://doi.org/10.3390/en13102481
[43]  高有华, 王彩云, 刘晓明, 王珊, 齐安智. 盆式绝缘子存在自由金属颗粒时的电场分析及其对沿面闪络的影响[J]. 电工电能新技术, 2015, 34(8): 56-61.
[44]  李伯涛. 直流GIL中金属微粒对绝缘子表面电荷积聚的作用机制研究[D]: [硕士学位论文]. 北京: 华北电力大学(北京), 2016.
[45]  王健, 李伯涛, 李庆民, 刘思华, 马国明. 直流GIL中线形金属微粒对柱式绝缘子表面电荷积聚的影响[J]. 电工技术学报, 2016, 31(15): 213-222.
[46]  李伯涛, 王健, 张圣富, 李庆民, 周勇, 李士动. 直流GIL中附着导电微粒对绝缘子表面电荷积聚特性的影响分析[J]. 高压电器, 2017, 53(7): 80-86.
[47]  郭伟林. 盆式绝缘子表面绝缘特性的影响因素研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2019.
[48]  邹钰洁, 唐忠, 晏武, 尹浩洁, 唐春童. 直流GIL中柱式绝缘子附着金属微粒对表面电荷积聚的影响研究[J]. 电瓷避雷器, 2020(2): 236-243.
[49]  Iwabuchi, H., et al. (2013) Influence of Tiny Metal Particles on Charge Accumulation Phenomena of GIS Model Spacer in High-Pressure SF6 Gas. IEEE Transactions on Dielectrics and Electrical Insulation, 20, 1895-1901.
https://doi.org/10.1109/TDEI.2013.6633722
[50]  王邸博. 直流电压下聚四氟乙烯表面电荷的聚散及其对闪络特性的影响[D]: [博士学位论文]. 重庆: 重庆大学, 2015.
[51]  Wang, H., Xue, J.Y., Chen, J.H., Deng, J., Zhang, G.J. and Meng, S.X. (2019) Effects of Metal Particle Material on Surface Flashover Performance of Alumina-Filled Epoxy Resin Spacers in SF6/N2 Mixtures under DC Voltage. AIP Advances, 9, Article ID: 085212.
https://doi.org/10.1063/1.5110976
[52]  许渊, 刘卫东, 陈维江, 李星, 殷禹, 毕建刚, 崔博源, 牛勃. 运行工况下交流GIS绝缘子表面微金属颗粒运动诱发沿面闪络的研究[J]. 电网技术, 2020, 44(4): 1596-1602.
[53]  王健. 直流GIL金属微粒的荷电运动机制与治理方法研究[D]: [博士学位论文]. 北京: 华北电力大学(北京), 2017.
[54]  杨津基. 气体放电[M]. 北京: 科学出版社, 1983.
[55]  Li, C., He, J. and Hu, J. (2016) Surface Morphology and Electrical Characteristics of Direct Fluorinated Epoxy-Resin/ Alumina Composite. IEEE Transactions on Dielectrics and Electrical Insulation, 23, 3071-3077.
https://doi.org/10.1109/TDEI.2016.7736871
[56]  Sudarshan, T.S. and Dougal, R.A. (1986) Mechanisms of Surface Flashover along Solid Dielectrics in Compressed Gases: A Review. IEEE Transactions on Electrical Insulation, EI-21, 727-746.
https://doi.org/10.1109/TEI.1986.348922
[57]  Li, C., Zhu, Y. and Hu, J. (2020) Charge Cluster Triggers Unpredictable Insulation Surface Flashover in Pressurized SF6. IEEE Transactions on Dielectrics and Electrical Insulation.
https://doi.org/10.1088/1361-6463/abb38f
[58]  Li, C., Hu, J., Lin, C. and He, J. (2017) The Potentially Neglected Culprit of DC Surface Flashover: Electron Migration under Temperature Gradients. Scientific Reports, 7, Article No. 3271.
https://doi.org/10.1038/s41598-017-03657-1
[59]  Li, S., Huang, Y., Min, D., et al. (2019) Synergic Effect of Adsorbed Gas and Charging on Surface Flashover. Scientific Reports, 9, Article No. 5464.
https://doi.org/10.1038/s41598-019-41961-0

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413