全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

紫外激光器应用进展
Application Progress of Ultraviolet Laser

DOI: 10.12677/OE.2021.111004, PP. 26-34

Keywords: 紫外激光器,微加工,半导体材料,微光学器件,集成电路
Ultraviolet Laser
, Micro Fabrication, Semiconductor Materials, Micro-Optical Devices, Integrated Circuit

Full-Text   Cite this paper   Add to My Lib

Abstract:

紫外激光是一种能量比较集中、波长较短、分辨率高,可以被广泛材料充分且有效吸收的激光。它具有不接触物体就可改造物体表面生物、化学和物理性质的特性,最突出的特点是“冷”加工,及较少的产生热,减少热能对材料的损伤,所以特别适用于加工微小脆性的材料。本文简要介绍了紫外激光器的发展,并对常用于激光加工的准分子气体激光器和全固态紫外激光器的原理和技术进行了概述。重点介绍了紫外激光器的应用。在医用生物材料方面:紫外激光对生物材料照射,改其表面的生物、化学特性,但不破坏和改变材料整体性质,如增强生物材料与人体组织的相容性。在刑侦方面,通过紫外激光器可以更加便捷地找到犯罪嫌疑人在现场留下的痕迹。在集成电路板上的应用方面,紫外激光器可以在柔性电路、聚合物和铜的层布式电路还有一些微小的电路材料上进行精确的打孔、打标、切割。在微光学器件和半导体产业中的应用方面,紫外激光器可以对易碎、容易破损、易产生裂纹的微小光学器件和半导体材料进行高效和高质量的加工和研究。
Ultraviolet laser is a kind of laser with concentrated energy, short wavelength and high resolution, which can be fully and effectively absorbed by a wide range of materials. It has the characteristics that it can transform the biological, chemical and physical properties of the object surface without touching the object. The most prominent feature is “cold” processing, and less heat generation, which can reduce the damage of heat energy to materials, so it is especially suitable for processing micro-brittle materials. In this paper, the development of ultraviolet laser is briefly introduced, and the principle and technology of excimer gas laser and all solid state ultraviolet laser commonly used in laser processing are summarized. The application of UV laser is mainly introduced. In the aspect of medical biomaterials, ultraviolet laser irradiation can improve the biological and chemical properties of biomaterials surface, but not destroy and change the overall properties of biomaterials, such as enhancing the compatibility between biomaterials and human tissues. In the area of criminal investigation, ultraviolet laser can be more convenient to find the traces left by suspects. In the application of integrated circuit board, UV laser can accurately punch, mark and cut on flexible circuit, polymer and copper layer circuit, and some microcircuit materials. In the application of micro-optical devices and semiconductor industry, UV laser can be used to process and research micro-optical devices and semiconductor materials with high efficiency and high quality.

References

[1]  聂世琳, 管迎春. 紫外激光器及其在微加工中的应用[J]. 光电工程, 2017, 44(12): 1169-1251.
[2]  唐娟, 廖健宏, 蒙红云, 等. 紫外激光器及其在激光加工中的应用[J]. 激光与光电子学进展, 2007, 44(8): 52-56.
[3]  凡瑞霞, 王永强, 曹伟涛. 紫外光源与紫外激光器现状[J]. 焦作大学学报, 2006, 20(3): 59-68.
[4]  陈国夫, 王贤华, 杜戈果.全固态紫外激光器研究[J]. 光子学报, 1999, 28(9): 785-788.
[5]  孔庆鑫, 任怀瑾, 鲁燕华, 等. 全固态紫外激光器研究进展[J]. 光通信技术, 2017, 41(5): 34-37.
[6]  田明, 王菲, 李玉瑶, 等. 大功率准连续355 nm紫外全固态激光器的研究[J]. 激光与光电子学进展, 2014, 51(8): 120-123.
[7]  Dittmara, H., G?bler, F. and Stute, U. (2013) UV-Laser Ablation of Fibre Reinforced Composites with ns-Pulses. Physics Procedia, 41, 266-275.
https://doi.org/10.1016/j.phpro.2013.03.078
[8]  刘学青. 干法刻蚀辅助飞秒激光加工技术研究[D]: [博士学位论文]. 长春: 吉林大学, 2017: 2-9.
[9]  Colombelli, J., Reynaud, E.G. and Stelzer, E.H.K. (2005) Subcellular Nanosurgery with a Pulsed Subnanosecond UV-A Laser. Medical Laser Application, 20, 217-222.
https://doi.org/10.1016/j.mla.2005.07.003
[10]  Hammer, C.M., Dipl-Biol, Kunert, K.S., et al. (2018) Interface Morphology and Gas Production by a Refractive 347 nm Ultraviolet Femtosecond Laser: Comparison with Established Laser Systems. Journal of Cataract & Refractive Surgery, 44, 1371-1377.
https://doi.org/10.1016/j.jcrs.2018.05.030
[11]  Shi, K.W., Kar, Y.B., Talik, N.A. and Yew, L.W. (2017) Ultraviolet Laser Diode Ablation Process for CMOS 45 nm Copper Low-K Semiconductor Wafer. Procedia Engineering, 184, 360-369.
https://doi.org/10.1016/j.proeng.2017.04.106
[12]  黄汝多, 查向栋, 李振华, 等. XeCl准分子紫外激光辐照生物大分子BSA(V)对其蛋白质结构的影响[J]. 激光生物学报, 2007, 16(4): 379-389.
[13]  黄汝多, 朱峰, 陈彦, 等. XeCl (308 nm)准分子紫外激光对生物大分子酵母甘露聚糖分子结构的辐照效应[J]. 激光生物学报, 2009, 18(4): 440-449.
[14]  储彬, 于辉, 张灵敏, 等. 紫外准分子激光照射对生物材料改性影响[J]. 激光杂志, 2010, 31(5): 40-41.
[15]  蔡能斌, 徐宝桢, 孙文鼎, 等. 紫外激光成像装置显现潜指印的研究与应用[J]. 中国人民公安大学学报, 2011, 69(3): 1-4.
[16]  蔡能斌, 顾丽华, 黄晓春, 等. 紫外激光探测对常见现场生物物证DNA检验的影响[J]. 影像技术, 2011(6): 26-29.
[17]  张菲, 段军, 曾晓雁, 等. 355 nm紫外激光器加工多层柔性线路板盲孔[J]. 红外与激光工程, 2010, 39(1): 143-146.
[18]  Henning, S., et al. (2016) Processing of Polyamide Electrospun Nanofibers with Picosecond UV Laser Irradiation. Physics Procedia, 20, 217-222.
[19]  张秋鄂, 任玉柏. 小型精密CO2激光打孔机[J]. 长春光学精密机械学院学报, 1997, 20(4): 46-49.
[20]  揭彦秋. 精细激光工业加工的应用概况[J]. 激光技术与应用, 2007(6): 24-26.
[21]  倪超, 王明娣, 施克明, 等. 飞秒激光刻蚀FR-4覆铜板成形微细线路研究[J]. 激光与红外, 2019, 49(4): 410-417.
[22]  邵江锋, 华灯鑫, 汪丽, 等. 全天时紫外高光谱瑞利测温激光雷达系统[J]. 光学学报, 2017, 37(6): 22-30.
[23]  Adhi, K.P. (2004) Chemical Modifications in Femtosecond Ultraviolet (248 nm) Excimer Laser Radiation-Processed Polyimide. Applied Surface Science, 225, 324-331.
https://doi.org/10.1016/j.apsusc.2003.10.034
[24]  徐东. 紫外纳秒激光直写铜膜微结构的研究[D]: [硕士学位论文]. 天津: 天津大学, 2014: 5-6.
[25]  刘晨星, 张大勇. 紫外激光与半导体相互作用研究进展综述[J]. 光电技术应用, 2012, 27(2): 21-26.
[26]  崔建丰, 赵晶, 樊仲维, 等. 厚硅片的高速激光切片研究[J]. 光学精密工程, 2006, 14(5): 829-834.
[27]  张菲, 杨焕, 段军, 等. 355 nm全固态紫外激光切割硅片的研究[C]//第十六届全国半导体集成电路硅材料学术会议论文集. 武汉: 华中科技大学, 2009: 1-6.
[28]  Sotnikov, A., Laux, H. and Stritzker, B. (2010) Experimental and Numerical Optimization of Beam Shapes for Short-Pulse Ultraviolet Laser Cutting Processing. Physics Procedia, 5, 137-146.
https://doi.org/10.1016/j.phpro.2010.08.130
[29]  Cachoncinlle, C., Millon, E., Petit, A. and Nistor, M. (2017) Random Lasing in Wide-Gap Semiconductor Thin Films under Deep UV Pulsed Laser Pumping. Materials Today, 4, S52-S61.
https://doi.org/10.1016/j.matpr.2017.05.010
[30]  李奇思, 梁庭, 雷程, 等. 355 nm全固态紫外激光直写刻蚀硼硅玻璃微通道[J]. 中国激光, 2018, 45(8): 73-80.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133