全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

低频段负泊松比夹层结构减振设计与分析
Design and Analysis of Sandwich Structure with Negative Poisson’s Ratio for Vibration Reduction in Low Frequency Range

DOI: 10.12677/OJAV.2021.91002, PP. 10-22

Keywords: 负泊松比,超材料,均匀刚度,变化刚度,低频振动
Negative Poisson’s Ratio
, Metamaterial, Uniform Stiffness, Variable Stiffness, Low Frequency Vibration

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于有限元方法,将负泊松比超材料应用于常见夹层结构,探究减振设计方案。在一定设计区域内,分别用不同比例的星形胞元进行周期排列,组成均匀刚度负泊松比夹层结构并进行谐响应分析,得出结构承载性、吸能性与刚度之间的关系,为了提升低频振动衰减效果,提出变化刚度的设计思想。数值计算结果表明相比均匀刚度结构,变化刚度结构一方面拓展了具有减振效果的低频段频带范围,另一方面还一定程度降低了对应位置评价点的输出加速度级。因此胞元层刚度的合理配置有助于改善振动能量在传输路径上的分配,优化振动控制效果。
Based on the finite element method, negative Poisson’s ratio metamaterials were applied to common sandwich structures to explore the design scheme of vibration reduction. In a certain design area, different proportions of star-shaped cells are used for periodic arrangement to form a uniform stiffness sandwich structure with negative Poisson’s ratio, then perform harmonic response analysis to obtain the relationship between structural load-bearing capacity, energy absorption and stiffness. In order to improve the attenuation effect of low-frequency vibration, a design idea of variable stiffness was proposed. Numerical simulation results show that on the one hand, the variable stiffness structure expands the low frequency band with damping effect compared with the uniform stiffness structure; on the other hand, it also reduces the output acceleration level of the corresponding location evaluation point to a certain extent. Therefore, reasonable arrangement of stiffness is helpful to improve the distribution of energy on the transmission path and optimize the vibration control effect.

References

[1]  Evans, K.E., Nkansah, M.A., Hutchinson, I.J. and Rogers, S.C. (1991) Molecular Network Design. Nature, 353, 124.
https://doi.org/10.1038/353124a0
[2]  杨德庆, 夏利福. 负泊松比超材料浮筏设计与减振机理研究[J]. 中国造船, 2018, 59(3): 144-154. http://dx.chinadoi.cn/10.3969/j.issn.1000-4882.2018.03.015
[3]  Prawoto, Y. (2012) Seeing Auxetic Materials from the Mechanics Point of View: A Structural Review on the Negative Poisson’s Ratio. Computational Materials Science, 58, 140-153.
https://doi.org/10.1016/j.commatsci.2012.02.012
[4]  周宏元, 贾昆程, 王小娟, 刘路. 负泊松比三明治结构填充泡沫混凝土的面内压缩性能[J]. 复合材料学报, 2020, 37(7): 2005-2014.
https://doi.org/10.13801/j.cnki.fhclxb.20191207.001
[5]  刘泽洋. 负泊松比蜂窝结构的力学性能测试及装置柔顺控制策略研究[D]: [硕士学位论文]. 长春: 吉林大学, 2019.
[6]  卢子兴, 李康. 手性和反手性蜂窝材料的面内冲击性能研究[J]. 振动与冲击, 2017, 36(21): 16-22+39. http://dx.chinadoi.cn/10.13465/j.cnki.jvs.2017.21.003
[7]  马芳武, 梁鸿宇, 赵颖, 陈实现, 蒲永锋. 内凹三角形负泊松比材料的面内冲击动力学性能[J]. 振动与冲击, 2019, 38(17): 81-87+127. http://dx.chinadoi.cn/10.13465/j.cnki.jvs.2019.17.011
[8]  邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J]. 振动与冲击, 2017, 36(13): 103-109+154. http://dx.chinadoi.cn/10.13465/j.cnki.jvs.2017.13.016
[9]  秦浩星, 杨德庆. 任意负泊松比超材料结构设计的功能基元拓扑优化法[J]. 复合材料学报, 2018, 35(4): 1014-1023. http://dx.chinadoi.cn/10.13801/j.cnki.fhclxb.20170619.002
[10]  邹松春. 负泊松比结构车身零件耐撞性优化设计[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2019.
[11]  薛莹莹. 三维AI基拉胀结构的设计、制备、优化及其力学性能研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2019.
[12]  熊家鹏. 负泊松比结构设计及选区激光熔化3D打印工艺优化研究[D]: [硕士学位论文].南京: 南京航空航天大学, 2018.
[13]  杜义贤, 李荣, 田启华, 周祥曼. 具有吸能和承载特性的多孔结构拓扑优化[J]. 华中科技大学学报(自然科学版), 2019, 47(8): 108-113. http://dx.chinadoi.cn/10.13245/j.hust.190821
[14]  Lu, Z.-X., Li, X., Yang, Z.-Y. and Xie, F. (2016) Novel Structure with Negative Poisson’s Ratio and Enhanced Young’s Modulus. Composite Structures, 138, 243-252.
https://doi.org/10.1016/j.compstruct.2015.11.036
[15]  崔世堂, 王波, 张科. 负泊松比蜂窝面内动态压缩行为与吸能特性研究[J]. 应用力学学报, 2017, 34(5): 919-924+1015.
[16]  Chen, Z.Y., Wang, Z., Zhou, S.W., Shao, J.W. and Wu, X. (2018) Novel Negative Poisson’s Ratio Lattice Structures with Enhanced Stiffness and Energy Absorption Capacity. Materials, 11, 1095.
https://doi.org/10.3390/ma11071095
[17]  Qin, H.X., Yang, D.Q. and Ren, C.H. (150) Modelling Theory of Functional Element Design for Metamaterials with Arbitrary Negative Poisson’s Ratio. Computational Materials Science, 150, 121-133.
https://doi.org/10.1016/j.commatsci.2018.03.056
[18]  Qin, H.X. and Yang, D.Q. (2019) Vibration Reduction De-sign Method of Metamaterials with Negative Poisson’s Ratio. Journal of Materials Science, 54, 14038-14054.
https://doi.org/10.1007/s10853-019-03903-z
[19]  Sun, Y.T. and Pugno, N.M. (2013) In Plane Stiffness of Multi-functional Hierarchical Honeycombs with Negative Poisson’s Ratio Sub-Structures. Composite Structures, 106, 681-689.
https://doi.org/10.1016/j.compstruct.2013.05.008
[20]  李振, 王亚进, 刘经兴, 王良模. 胞元缺失对蜂窝结构面内力学性能的影响[J]. 南京理工大学学报, 2019, 43(5): 541-547.
[21]  Gibson, L.J. and Ashby, M.F. (1997) Cel-lular Solids: Structure and Properties. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139878326

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413