全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑磁致伸缩效应时电机定子硅钢片的振动研究
Study on Vibration of Silicon Steel Sheet of Motor Stator Considering Magnetostrictive Effect

DOI: 10.12677/JEE.2021.91001, PP. 1-10

Keywords: 定子硅钢片,磁致伸缩,叠压片数,应变,振动
Stator Silicon Steel Sheet
, Magnetostriction, Number of Laminations, Strain, Vibration

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究交变磁场下电机定子硅钢片磁致伸缩效应的变化规律,本文首先建立了无取向硅钢片磁–机械耦合数值模型,研究了不同叠压片数无取向硅钢片在交变磁场中表面应力的变化情况,并根据仿真模型搭建了实验平台进行实验。将硅钢片水平放置在线圈一侧,并由绝缘材料固定位置,然后分别对水平放置和倾斜45?放置的无取向硅钢片进行了应变采集和振动测量实验,结果都发现在同一交变磁场下,随着无取向硅钢片叠压片数的增加,无取向硅钢片表面的应变和振动情况逐渐减小,这与仿真结果相符。此结论对电机减振降噪有一定的指导意义。
In order to study the variation law of magnetostrictive effect of motor stator silicon steel sheet under alternating magnetic field, the magnetic mechanical coupling numerical model of non oriented silicon steel sheet is established in this paper, and the change of surface stress of non oriented silicon steel sheet with different number of laminated sheets in alternating magnetic field is studied, and the experimental platform is built based on the simulation model. The non- oriented silicon steel sheet was placed horizontally on one side of the coil and fixed by insulating material. Then the strain collection and vibration measurement experiments were carried out on the non oriented silicon steel sheet placed horizontally and inclined 45? respectively. The results show that, under the same alternating magnetic field, the strain and vibration on the surface of the non oriented silicon steel sheet gradually decrease with the increase of the number of laminated sheets The true result is consistent. This conclusion has a certain guiding significance for motor vibration and noise reduction.

References

[1]  Islam, R. and Husain, I. (2011) Analytical Model for Predicting Noise and Vibration in Permanent-Magnet Synchronous Motors. IEEE Transactions on Industry Applications, 46, 2346-2354.
https://doi.org/10.1109/TIA.2010.2070473
[2]  Lin, F., Zuo, S.G., Deng, W.Z. and Wu, S.L. (2016) Modeling and Analysis of Electromagnetic Force, Vibration, and Noise in Permanent-Magnet Synchronous Motor Considering Current Harmonics. IEEE Transactions on Industrial Electronics, 63, 7455-7466.
https://doi.org/10.1109/TIE.2016.2593683
[3]  Liang, W.Y., Luk, P. and Fei, W.Z. (2016) Analytical Investigation of Sideband Electromagnetic Vibration in Integral-Slot PMSM Drive with SVPWM Technique. IEEE Transactions on Power Electronics, 32, 4785-4795.
https://doi.org/10.1109/TPEL.2016.2602944
[4]  Guo, X.Q., Zhong, R., Zhao, L.P., Yin, J. and Sun, W.F. (2016) Method for Radial Vibration Modelling in Switched Reluctance Motor. IET Electric Power Applications, 10, 834-842.
[5]  Guo, X.Q, Zhong, R., Ding, D.S., Zhang, M.-S., Shao, W.-J. and Sun, W.-F. (2017) Origin of Resonance Noise and Analysis of Randomising Turn-on Angle Method in Switched Reluctance Motor. IET Electric Power Applications, 11, 1324-1332.
https://doi.org/10.1049/iet-epa.2016.0871
[6]  Zhong, R., Guo, X.Q., Zhang, M.S., Ding, D.S. and Sun, W.F. (2018) Influence of Switch Angles on Second-Order Current Harmonic and Resonance in Switched Reluctance Motors. IET Electric Power Applications, 12, 1247-1255.
https://doi.org/10.1049/iet-epa.2018.0004
[7]  Belahcen, A. (2004) Magnetoelasticity, Magnetic Forces and Magnetostriction in Electrical Machines. Doctoral Thesis, Helsinki University of Technology, Espoo.
[8]  韩雪岩, 张哲, 吴胜男, 陈健. 磁致伸缩对变频器供电永磁电机振动噪声影响[J]. 电机与控制学报, 2015, 19(4): 1-6.
[9]  韩雪岩, 赵森磊, 周挺, 吴胜男, 张哲. 非晶合金电机振动噪声影响因素的研究[J]. 电工技术学报, 2015, 30(14): 531-538.
[10]  Shahaj, A. and Garvey, S.D. (2011) A Possible Method for Magnetostrictive Reduction of Vibration in Large Electrical Machines. IEEE Transactions on Magnetics, 47, 374-385.
https://doi.org/10.1109/TMAG.2010.2095875
[11]  Besnerais, J.L., Lanfranchi, V., Hecquet, M. and Brochet, P. (2010) Characterization and Reduction of Audible Magnetic Noise Due to PWM Supply in Induction Machines. IEEE Transactions on Industrial Electronic, 57, 1288-1295.
https://doi.org/10.1109/TIE.2009.2029529
[12]  Somkun, S., Moses, A.J. and Anderson, P.I. (2008) Mechanical Resonance in Nonoriented Electrical Steels Induced by Magnetostriction Under PWM Voltage Excitation. IEEE Transactions on Magnetics, 44, 4062-4065.
https://doi.org/10.1109/TMAG.2008.2001585
[13]  张艳丽, 孙小光, 谢德馨, 白保东, 闫秀恪, 任自艳, 张殿海. 无取向电工钢片磁致伸缩特性测量与模拟[J]. 电工技术学报, 2013, 28(11): 176-181.
[14]  张艳丽, 孙小光, 白保东, 谢德馨, 任自艳, 张殿海. 晶粒无取向硅钢片取向特性分析[J]. 电工技术学报, 2013, 28(S2): 99-104.
[15]  Mohammed, O.A., Calvert, T. and Mcconnell, R. (2001) Coupled Magnetoelastic Finite Element Formulation Including Anisotropic Reluctivity Tensor and Magnetostriction Effects for Machinery Applications. IEEE Transactions on Magnetics, 37, 3388-3392.
https://doi.org/10.1109/20.952620
[16]  Somkun, S., Moses, A.J. and Anderson, P.I. (2009) Effect of Magnetostriction Anisotropy in Nonoriented Electrical Steels on Deformation of Induction Motor Stator Cores. IEEE Transactions on Magnetics, 45, 4744-4747.
https://doi.org/10.1109/TMAG.2009.2022320
[17]  Vandevelde, L. and Melkebeek, J.A.A. (2003) Magnetic Forces and Magnetostriction in Electrical Machines and Transformer Cores. IEEE Transactions on Magnetics, 39, 1618-1621.
https://doi.org/10.1109/TMAG.2003.810414
[18]  Delaere, K., Heylen, W., Belmans, R. and Hameyer, K. (2002) Comparison of Induction Machine Stator Vibration Spectra Induced by Reluctance Forces and Magnetostriction. IEEE Transactions on Magnetics, 38, 969-972.
https://doi.org/10.1109/20.996249

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413