全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非线性本构关系下两端固定铰支梁的弯曲变形
Bending Deformation of Hinged-Fixed Beams at Both Ends under Nonlinear Constitutive Relations

DOI: 10.12677/IJM.2021.101001, PP. 1-6

Keywords: 梁,非线性,本构关系,弯曲,数值法
Beam
, Nonlinear, Constitutive Relation, Bending, Numerical Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于经典梁理论,假设弹性模量与应变成线性关系(本构关系非线性),推导了受铅垂均布载荷作用的两端固定铰支梁弯曲的基本方程。并对基本方程及边界条件无量纲化,以使其具有一般性。然后采用数值法求解该问题无量纲基本方程的数值结果。分析了大挠度和小挠度两种情况下本构关系非线性和铅垂分布载荷对梁弯曲变形以及中性轴位置的影响并进行比较。
Based on the classical beam theory, this paper assumes that the elastic modulus and the strain become a linear relationship (non-linear constitutive relationship), and derives the basic equation for the bending of a fixed hinge beam at both ends under a vertical uniform load. And the basic equations and boundary conditions are dimensionless to make them general. Then, the numerical method is used to solve the numerical results of the non-dimensional basic equation of the problem. The influence of the nonlinear constitutive relationship and the vertical distributed load on the bending deformation of the beam and the position of the neutral layer in the two cases of large deflection and small deflection are analyzed and compared.

References

[1]  Ambartsumyan, S.A. 不同模量弹性理论[M]. 邬瑞峰, 张允真, 译. 北京: 中国铁道出版社, 1986.
[2]  经来旺. 拉压弹性常数不同对梁的弯曲强度的影响[J]. 西安科技学院学报, 2001, 21(3): 305-308.
[3]  王铭惠, 赵永刚, 王康建, 等. 拉压弹性模量不等材料简支梁的线性振动问题[J]. 甘肃科学学报, 2014, 26(5): 10-13.
[4]  王康建, 赵永刚, 王铭慧, 等. 拉压弹性模量不等材料杆的过屈曲分析[J]. 甘肃科学学报, 2014, 26(6): 19-22.
[5]  Fraternali, F., Spadea, S. and Ascione, L. (2013) Buckling Behavior of Curved Composite Beams with Different Elastic Response in Tension and Compression. Composite Structures, 100, 280-289.
https://doi.org/10.1016/j.compstruct.2012.12.021
[6]  Yao, W.J. and Ye, Z.M. (2004) Analytical Solution for Bending Beam Subject to Lateral Force with Different Modulus. Applied Mathematics & Mechanics, 25, 1107-1117.
https://doi.org/10.1007/BF02439863
[7]  穆琳, 胡宝庆, 凌雷, 等. 拉压弹性模量不等材料简支梁在横向载荷作用下的线性振动问题[J]. 甘肃科学学报, 2013, 25(4): 105-107.
[8]  吴晓, 杨立军. 拉压弹性模量不同曲梁的弹性理论解[J]. 工程力学, 2013(1): 86-90.
[9]  周小平, 卢萍, 张永兴, 等. 不同拉压模量弹性地基梁的解析解[J]. 重庆大学学报(自然科学版), 2007, 30(7): 78-82.
[10]  张允真, 王志锋. 不同拉压模量弹性力学问题的有限元法[J]. 南昌工程学院学报, 1989(1): 236-246.
[11]  蔡来生, 俞焕然. 拉压模量不同弹性物质的本构[J]. 西安科技大学学报, 2009(1): 17-21.
[12]  秦慧峰, 赵永刚. 非线性本构关系下圆板的大挠度问题[J]. 力学研究, 2020, 9(2): 77-84.
[13]  曲昭霞, 赵永刚, 秦慧峰. 非线性本构关系下两端固定梁的弯曲变形[J]. 甘肃科学学报, 2020, 32(1): 1-4.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133