全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Smart Grid  2021 

考虑直流线路和换流器故障的交直流配电网弹性分析
Resilience Analysis of AC/DC Distribution Network considering DC Line and Converter Faults

DOI: 10.12677/SG.2021.112010, PP. 94-106

Keywords: 交直流配电网,弹性,三层优化模型,系统元件攻击
AC/DC Distribution Network
, Resilience, Tri-Level Optimization Model, System Component Attack

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着用户对直流配电网需求的日益增加,交直流混合配电网可能成为未来配电网发展的重要方向之一。为提升交直流配电网面对极端攻击事件的抵御、适应、恢复能力,本文建立了考虑直流线路和换流器故障的防御–攻击–防御三层弹性规划模型。模型以加固元件和分布式能源预置为规划措施,在考虑系统受到最严重攻击情况下,实现了综合费用最小和失负荷最小的目标。本文以列与约束生成算法为求解方法,构建22节点系统进行算例分析,验证了本文方法的有效性。
With the increasing demand for DC distribution network, AC-DC hybrid topology may become an important direction of future distribution network development. In order to improve the ability of resisting, adapting and recovering in the face of extreme attack events, a tri-level resilience programming model, which takes the form of defense-attack-defense model, is established in this paper. Also, the fault of DC lines and converters are considered. The model takes the components hardening and distributed energy presetting as the planning measures. Considering the most serious attack on the distribution network, it finally achieves the goal of minimum comprehensive cost and minimum load loss. In this paper, the column and constraint generation algorithm is used as the solution method, and the effectiveness of this method is verified by the example analysis.

References

[1]  高海翔, 陈颖, 黄少伟, 等. 配电网韧性及其相关研究进展[J]. 电力系统自动化, 2015(23): 1-8.
[2]  Wang, Y., Chen, C., Wang, J., et al. (2015) Research on Resilience of Power Systems under Natural Disasters—A Review. IEEE Transactions on Power Systems, 31, 1-10.
https://doi.org/10.1109/TPWRS.2015.2429656
[3]  Michel, B., Massignan, J.A.D., Fanucchi, R.Z., et al. (2018) Probabilistic Assessment of Power Distribution Systems Resilience under Extreme Weather. IEEE Systems Journal, 13, 1747-1756.
[4]  Wang, Y. and Baldick, R. (2014) Interdiction Analysis of Electric Grids Combining Cascading Outage and Medium-Term Impacts. IEEE Transactions on Power Systems, 29, 2160-2168.
https://doi.org/10.1109/TPWRS.2014.2300695
[5]  周晓敏, 葛少云, 李腾, 等. 极端天气条件下的配电网韧性分析方法及提升措施研究[J]. 中国电机工程学报, 201, 38(2): 505-513.
[6]  赵彪, 赵宇明, 王一振, 等. 基于柔性中压直流配电的能源互联网系统[J]. 中国电机工程学报, 2015, 35(19): 4843-4851.
[7]  郑欢, 江道灼, 杜翼. 交流配电网与直流配电网的经济性比较[J]. 电网技术, 2013, 37(12): 3368-3374.
[8]  王丹, 柳依然, 梁翔, 等. 直流配电网电压等级序列研究[J]. 电力系统自动化, 2015, 39(9): 19-25, 47.
[9]  曾嘉思, 徐习东, 赵宇明. 交直流配电网可靠性对比[J]. 电网技术, 2014, 38(9): 2582-2589.
[10]  Li, Z., Shahidehpour, M., Aminifar, F., et al. (2017) Networked Microgrids for Enhancing the Power System Resilience. Proceedings of the IEEE, 105, 1289-1310.
[11]  Khederzadeh, M. and Zandi, S. (2019) Enhancement of Distribution System Restoration Capability in Single/Multiple Faults by Using Microgrids as a Resiliency Resource. IEEE Systems Journal, 13, 1796-1803.
https://doi.org/10.1109/JSYST.2019.2890898
[12]  Wang, Z., Shen, C., Xu, Y., et al. (2018) Risk-Limiting Load Restoration for Resilience Enhancement with Intermittent Energy Resources. IEEE Transactions on Smart Grid, 10, 2507-2522.
[13]  Pinto, R.T., Aragüés-Pe?alba, M., Gomis-Bellmunt, O., et al. (2016) Optimal Operation of DC Networks to Support Power System Outage Management. IEEE Transactions on Smart Grid, 7, 2953-2961.
https://doi.org/10.1109/TSG.2016.2586024
[14]  Salmeron, J., Wood, K. and Baldick, R. (2004) Analysis of Electric Grid Security under Terrorist Threat. IEEE Transactions on Power Systems, 19, 905-912.
https://doi.org/10.1109/TPWRS.2004.825888
[15]  Salmeron, J., Wood, K. and Baldick, R. (2009) Worst-Case Interdiction Analysis of Large-Scale Electric Power Grids. IEEE Transactions on Power Systems, 24, 96-104.
https://doi.org/10.1109/TPWRS.2008.2004825
[16]  Yuan, W., Wang, J., Qiu, F., et al. (2016) Robust Optimization-Based Resilient Distribution Network Planning against Natural Disasters. IEEE Transactions on Smart Grid, 7, 2817-2826.
https://doi.org/10.1109/TSG.2015.2513048
[17]  Yuan, W., Zhao, L. and Zeng, B. (2014) Optimal Power Grid Protection through a Defender-Attacker-Defender Model. Reliability Engineering & System Safety, 121, 83-89.
https://doi.org/10.1016/j.ress.2013.08.003
[18]  Baran, M.E. and Wu, F.F. (1989) Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing. IEEE Transactions on Power Delivery, 4, 1401-1407.
https://doi.org/10.1109/61.25627
[19]  Wang, Z., Chen, B., Wang, J., Kim, J. and Begovic, M.M. (2014) Robust Optimization Based Optimal DG Placement in Microgrids. IEEE Transactions on Smart Grid, 5, 2173-2182.
https://doi.org/10.1109/TSG.2014.2321748
[20]  赵建伟, 厉天康, 严正, 等. 交直流电网连锁故障研究现状与展望[J]. 华东电力, 2013(4): 720-724.
[21]  刘宇石. 交直流电网连锁故障传播机理及薄弱环节辨识方法[D]: [硕士学位论文]. 北京: 华北电力大学, 2016.
[22]  成敬周. 高压交直流互联系统故障分析及相关保护的研究[D]: [博士学位论文]. 杭州: 浙江大学, 2014.
[23]  别朝红, 林雁翎, 邱爱慈. 弹性电网及其恢复力的基本概念与研究展望[J]. 电力系统自动化, 2015, 39(22): 1-9.
[24]  Yao, Y., Edmunds, T., Papageorgiou, D. and Alvarez, R. (2007) Trilevel Optimization in Power Network Defense. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 37, 712-718.
https://doi.org/10.1109/TSMCC.2007.897487
[25]  Ma, S., Li, S., Wang, Z., et al. (2019) Resilience-Oriented Design of Distribution Systems. IEEE Transactions on Power Systems, 34, 2880-2891.
https://doi.org/10.1016/j.orl.2013.05.003
[26]  Zeng, B. and Zhao, L. (2013) Solving Two-Stage Robust Optimization Problems Using a Column-and-Constraint Generation Method. Operations Research Letters, 41, 457-461.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413